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ABSTRACT
This paper describes a new approach to fill missing data in hydrologic series. Based on a multiple-
order autoregressive model, our algorithm represents the random term with an empirical
distribution function that includes different parameters for the low, medium and high ranges
of the modelled hydrologic variable. The algorithm involves a corrective mechanism that pre-
serves the original statistical distribution of the series that are filled, while also eliminating the
possibility of obtaining negative values for low flows. The algorithm requires multiple correlated
hydrologic time series with sufficient data to permit accurate calculation of their statistical
properties. It ensures that both the original statistical dependence among the data series and
the statistical distribution functions will be preserved after the missing data had been filled. The
model has been tested using 15 streamflow series in the Upper Bow River watershed in Alberta,
Canada.
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1 Introduction

Gaps in historic streamflow data series pose
a significant problem for hydrologists and water
resources practitioners. Long and continuous data sets
allow more reliable estimates of the expected range of
water availability during various critical periods, and
they form important input to studies that require con-
tinuous data points for multiple locations in a river
basin within a common time period. While desirable,
the availability of such data is rare, since hydrometric
stations in a river basin have commenced or termi-
nated operations at different times, and data monitor-
ing has historically been interrupted due to budgetary
constraints or equipment malfunctions, resulting in
random occurrence of missing data records at various
stations.

Estimating missing data in time series is not only of
interest to hydrologists, but also to all professionals
who need lengthy continuous observed time series as
input to their analyses. This need has prompted many
researchers to look for ways to fill the missing data.
Moffat et al. (2007) compared 15 different missing-data
algorithms to estimate missing values of net ecosystem
CO2 exchange (NEE) in eddy-covariance time series
and evaluated their performance for different artificial
gap scenarios based on a set of 10 benchmark datasets

from six forested sites in Europe. They did not find an
obvious single winner for all benchmarks, but their
work did evaluate both classical as well as new and
emerging techniques. Specifically, the classical non-
linear regression techniques (NLRs), look-up table
(LUT), marginal distribution sampling (MDS), and
semi-parametric model (SPM) methods generally per-
formed well, while the artificial neural network based
techniques (ANNs) were found to be only slightly
better than the other techniques on some benchmarks.
The simple interpolation technique of mean diurnal
variation (MDV) also produced acceptable results,
while some new and sophisticated techniques, includ-
ing the dual unscented Kalman filter (UKF), the multi-
ple imputation method (MIM), the terrestrial
biosphere model (BETHY), one of the ANNs and one
of the NLRs, tended to develop biased estimates.
Tardivo and Berti (2013) developed criteria for select-
ing the best predictor stations for in-filling missing
daily streamflow data using a dense network of nearby
hydrologic stations. In addition to station selection,
much of their work was devoted to algorithm selection,
but did not provide any firm preference among them.
While Elshorbagy et al. (2002) had some success in
experimenting with the use of chaos theory, earlier
approaches that apply classical statistical models pri-
marily based on correlation, regression and moving
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average using various enhancement techniques con-
tinue to be used (Gyau-Boakye and Schultz 1994,
Simonovic 1995), and have seen continuous improve-
ment, as attested by recent work of Gottschalk et al.
(2015) and Tencaliec et al. (2015).

The ideas in this paper rely on recent developments
in statistics that have produced several successful algo-
rithms that preserve statistical correlation between ran-
domly generated variables and their original statistical
distributions. Iman and Conover (1982) introduced the
first of these algorithms. They were subsequently used
in hydrology and improved in various ways (Ilich
2009), and several recent publications have discussed
their use to enhance development of stochastic hydro-
logic time series (Ilich 2013). Although earlier work by
Simonovic (1995) provides a foundation for establish-
ing goals and evaluation criteria for such applications –
such as the preservation of both the original statistical
distribution function, as well as the statistical depen-
dence with the adjacent hydrologic time series – the
literature lacks publications that apply such methods to
in-filling of missing data, where the final outcome is
a mix of existing data and modelled results that were
used for in-filling.

This paper begins by explaining the concept of
developing correlated random variables with arbitrary
statistical distributions, which is extended to cover the
mix of existing data (that remain unchanged) and
missing data that are filled. An application of the algo-
rithm is demonstrated for the Bow River Basin system
of Alberta, Canada, which contains 15 locations with
time series of naturalized flows on the main stem and
its tributaries, some of which have missing records for
multiple years. The first case study validates the algo-
rithm, which was applied to periods where historic data
were intentionally removed, such that the simulated in-
filled series could be compared with the actual historic
data. In the second case study, an extended version of
the algorithm in-fills missing data for 14 stations in
reference to only one principal downstream station,
where data at this station were obtained through dis-
aggregation of annual flow estimates based on tree ring
data. Here, annual flow estimates for the 1111–
1911 period were obtained from a regressive relation-
ship of the historic flows and tree rings data from
multiple trees developed for the 1912–2013 period.
These estimates were completed as part of a separate
study by Sauchyn and Ilich (2017), so their develop-
ment is not described in detail in this paper. However,
important conceptual ideas related to the disaggrega-
tion of annual flows are provided here for complete-
ness and clarity. This approach helped complete over
904 years of weekly flows at 15 locations that preserve

all the relevant weekly flow statistics of the last 85 years
of the historic record. The City of Calgary has used
these weekly series as input for its modelling of
drought management operational scenarios.

2 Conceptual basis of the proposed algorithm

The proposed algorithm requires that, for each time
step with missing data for a particular series, at least
one other hydrometric station with available data can
be used as a point of reference. If all hydrometric
stations within the available subset lack data for certain
time periods, then either an alternative technique
(usually a combination of autoregressive and moving
average approaches) must be applied first to in-fill the
missing data on one of the stations, or a new station
must be included in the subset. This new station may
be more remote, but must have a reasonable statistical
correlation that can be used to in-fill the missing data.

In general terms, multiple order auto regression
model has the following formulation:

yi;t ¼
Xm
t¼1

Xn
j¼1

bj;txj;t þ c0 þ σi (1)

This formulation predicts the dependent variable yi,t so
as to combine the spatial cross-correlation between
correlated data at various hydrometric stations (or
locations j) with one or more time lags t. The above
model is subdivided into three terms on the right hand
side of the equation: (a) a linear form of independent
variables xj,t and their coefficients bj,t, presented as the
sum product; (b) a regression constant term co; and (c)
random term σi which is normally distributed with the
mean of zero and standard deviation equal to the
standard error of regression, i.e. σi = N[0, ɛi]. Each
part will be discussed in more detail below.

The sum-product term contains the influence of
spatial and temporal statistical dependence. The
model evaluates these dependences on an equal foot-
ing, based exclusively on the value of their correlation
coefficients. For data in-filling algorithms of average
weekly flows, it is typically sufficient for practical pur-
poses to focus on high cross-correlation in spatial
terms. The most significant temporal dependence
found in autocorrelation is usually met by association
with the independent variables (stations that have com-
plete data). However, this may not always be the case,
and the model should be able to also replicate auto-
correlation functions. The number of independent sta-
tions n in model construction is a matter of judgment.
It depends on the number of available stations and
their correlation coefficients with the particular station
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with missing data, and can be set by applying principal
component analyses to the correlation matrix either by
setting a low-correlation threshold below which the
correlation is no longer hydrologically meaningful, or
by limiting the size of the pool of independent stations
(parameter n in Equation (1)), and placing in it the
stations with the highest correlations to the station
with missing data. The above model can be constructed
for each series with missing data by first calculating the
correlation matrix and then using the correlation coef-
ficients to calculate the regression coefficients bj with
respect to the selected station with missing data (Ilich
2009). There are several important limitations of this
model defined by Equation (1) that should be
addressed and corrected so as to ensure its productive
use in hydrology.

The regression constant co may or may not have
a physical meaning. For large river basins with year-
round flows, this constant should represent the abso-
lute minimum flow; however, if used in this manner, it
is usually highly inaccurate. For example, in many
cases a positive value of co produces an artificially
high minimum flow, especially on smaller streams
where actual flows may reach very small or zero values.
In contrast, a negative regression-constant value may
cause the model to produce negative flows for periods
with extremely low independent flows associated with
independent regression variables. Neither the artificial
minimum flow that can never be violated, nor the
negative river flows calculated due to a negative regres-
sion constant are a desirable outcome of standard
regression models that have been used in hydrology.
In the past, such outcomes were usually corrected
manually by the practitioners.

Finally, the random term σi is a product of the
standard error of the estimate and a standardized
normally-distributed random variable with a mean
of zero and a standard deviation of ɛi. Frequent use
of this term within a linear model typically causes the
final model results also to be normally distributed,
despite the fact that the distribution of hydrologic
series is asymmetric. Recognizing this disadvantage,
some researchers have therefore applied alternative
approaches. For example, Efstratiadis et al. (2014)
used a three-parameter gamma distribution instead
of normal distribution, which is a better representa-
tion of the asymmetric distribution of residuals. The
approach in this work is similar, but uses instead an
empirical kernel distribution (Parzen 1962) that has
been further refined into different forms as
a function of the argument, as explained in the sec-
tion below entitled “Empirical distribution of the
residual function”.

In general, standard linear regression does not guar-
antee that simulated data share the same statistical
properties as the original flow series. In contrast, one
of the constraints of the proposed algorithm is to pre-
serve the basic statistics of the original series at a given
site, along with the spatial and temporal statistical
dependence with the other associated data series. The
algorithm for generating correlated random variables is
outlined next, so that the case studies presented in this
paper are easier to understand.

The first step in the algorithm identifies the data
series to be used as a starting reference for all other
series. In many instances, the most downstream hydro-
metric station has the most complete records, and is
also correlated to all upstream stations, so the choice is
obvious. However, where this is not the case,
a dominant starting series may be determined as: (a)
the series with the highest correlations to all other
series; or (b) the series with the most complete record.
These two criteria can be lumped into the following
statistic:

Ri ¼ w
1
n

Xn
j¼1

ρi;j þ 1� wð Þf i (2)

where 0 � w � 1, 0 � w � 1.
The statistic Ri refers to station i and it represents the

weighted sum of the average of all correlations between
station i and the other stations j, ρi;j, and the fraction of
time, ρi;j, that data are missing for station i. The weight

factor w is set arbitrarily by the user to give greater
importance either to the length of the missing record
or to the strength of the statistical dependence. In most
cases, a value of 0.5 for w is reasonable. This statistic can
be used to provide a relative ranking of all available data
series, and helps to determine the order in which the
missing data stations will be filled. Once the missing
values for the first series in this list are generated, they
are used as an independent station to fill the next series
in the list, and the same holds for all other subsequent
series – in other words, once a series is completed, it is
added to the pool of independent variables from which
the next series in the list is filled until all remaining
series are completed. In general, the algorithm is data-
driven, with only one user-defined parameter (a correla-
tion threshold below which statistical dependence
between stations i and j is deemed to be insignificant),
and it proceeds through the following steps:

(1) Read and conduct initial processing of input
data (a time series of available data, in which
missing values can be designated as −999.0) and
apply a user-supplied correlation threshold.
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Next, calculate correlation matrices based on
existing data and estimate the kernel density
functions of the residuals based on all available
data.

(2) Determine the data-filling sequence for all
stations.

(3) Fill the missing data for the first station in the
list.

(4) Check that the results of Step 3 comply with the
historic statistical distribution and correlations
to the previously-generated stations. If neces-
sary, conduct iterative fine-tuning.

(5) Return to Step 3 to process the next station in
the list, until all stations in the list have been
completed.

3 Empirical distribution of the residual
function

Figure 1 shows the residuals from an experimental simu-
lation, which uses two typical correlated hydrologic series
based on a standard regressive cross-correlative relation-
ship between two stations in a medium-sized catchment.
These series are modelled as:

yt ¼ btxt þ c0 þ σi (3)
The empirical distribution in Fig. 1 is based on
observed data. It can be closely represented by
a kernel empirical distribution function. Originally

defined by Parzen (1962), kernel density estimators
are data driven non-parametric functions that define
a probability density function. They eliminate the need
to fit parameters of one of the known mathematical
functions that are typically used in statistics to repre-
sent probability density functions. Mathematically, they
take the form:

f xð Þ ¼ 1
nh

Xn
i¼1

K
x � xi
h

� �
(4)

where f(x) is the probability density function of random
variable x, n is the sample size, and h is the bandwidth
that would correspond to the size of the bin typically
used when constructing probability density functions
based on empirical data. Various functional forms
have been proposed for K, and typically the Gaussian
form is one of the most popular, based on the general
assumption that the data points x within the +/− h band
from the xi point are locally distributed normally,
although the entire distribution of f(x) may be asymme-
trical. Theoretically, h→0 when n→∞, and the principal
issue with kernel distribution is to determine the size of
bandwidth h. Many empirical data driven formulas for
h have been proposed, and Scott (1979) proposed an
algorithm to define h based on minimizing the inte-
grated mean square error of the estimated histogram
and the actual data sample. The use of the kernel density
estimator has been widespread in hydrology in the last
two decades.

Figure 1. Empirical and theoretical normal distribution of regression residuals.
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As stated by Sharma et al. (1997), empirical cumu-
lative distribution plots can be approximated with
a localized weighted moving-average of the available
sorted data. In general, empirical distribution functions
can be viewed as a close approximation of the observed
data. However, a regression model shown in Equation
(3) tends to skew the original distribution of the depen-
dent variable yt since the random term in regression is
normally distributed. The graphs in Fig. 1 illustrate
typical differences between the observed data and the
data obtained using a standard regression with nor-
mally distributed residuals defined by Equation (3).
This difference is visible in the lower 20 percentiles
and in the upper 40 percentiles (probabilities higher
than 0.6 as shown in Fig. 1) of the theoretical normal
distribution curve, which demonstrates that normally
distributed residuals negatively affect the correspon-
dence of the distribution function of the simulated
series to the empirical distribution. To preserve the
target distribution function, one can develop a model
that replaces random residuals based on normal dis-

tribution f xð Þ ¼ 1
nh

Pn
i¼1

K x�xi
h

� �
with those from an

empirical distribution function, F, such that the series
is now calculated as:

yt ¼ btxt þ c0 þ F (5)

Due to its irregular shape and the inclusion of both
positive and negative values, it is appropriate to model
the function of residuals F using the kernel distribution as

its empirical distribution. The residuals represent the
differences in probabilities between the two curves
depicted in Fig. 1. A kernel-type distribution is the pre-
ferred choice for the functional form of F, because of the
unpredictability of its shape and the presence of negative
values, and because it is guaranteed to fit the historic data
in the probability range for which the data are available.
Further, the use of this distribution typically eliminates
the need to run the goodness-of-fit tests that are required
for fitting theoretical statistical distributions.

When analysing the empirical residual functions for
streamflow data, it is important to note that the empiri-
cal distribution of residuals depends on the data range.
For the same station i, residuals for high flows would
have a higher standard deviation and different distri-
bution than for low flows. Rather than trying to
develop a functional form that depicts the change in
the range of confidence limits, in the first approxima-
tion it is possible to partition the residual error func-
tion into several distinct functions, each related to the
target values of the dependent variable. We tested
several subdivisions and found that division of the
dependent variable into three segments, i.e. the lower
33 percentile, median (33–67 percentile), and the upper
sub-set (67–100 percentile), provides excellent results.
The corresponding residual cumulative distributions
are shown in Fig. 2.

Figure 2 is based on a data sample obtained from
two hydrometric stations on the Bow River near
Calgary. This partitioning of the above regression
model produces three equivalent models, based on

Figure 2. Breakdown of the residual function into three equivalent functions.
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the expected range (represented as the probability,
P(xt)) of the predictor:

yt ¼ btxt þ c0 þ εiF1;where P xtð Þ < 1
3

(6)

yt ¼ btxt þ c0 þ εiF2;where
1
3
� P xtð Þ � 2

3
(7)

yt ¼ btxt þ c0 þ εiF3;where P xtð Þ > 2
3

(8)

The benefits of model partitioning are as follows:

a. For the lower 33 percentile values of the predic-
tor, the expected random variation (function F1)
is reduced compared to the higher ranges of the
predictor. Function F1 appears to be almost sym-
metrical, with a shape that closely resembles
a normal distribution.

b. For median values of the predictor, the expected
range of random variation is asymmetrical, with
high positive values in the top 10 percentiles.
These high values are more than double the
range of the bottom 10 percentiles, which shows
the gradual change of the random term as
a function of predicted value yt.

c. For the top 33 percentile values of the predictor,
the residual shows a much higher likelihood of
significantly overestimating (rather than under-
estimating) the regression target, and has a more
pronounced asymmetry.

Note that the partitioning regression model is not
limited to producing three sub-models; however, a set
of experimental models divided into four and five

similar partitions did not meaningfully improve our
results. Sub-division of the predictor also need not be
limited to partitions of equal size, and partition size is
not critical to the functionality of the proposed algo-
rithm. Even without subdivision of the regression
model, the algorithm would function, but would
require more iterative fine-tuning steps, as explained
below. At this point, the results showed it was sufficient
to divide the predictor variable into three sub-sets that
correspond to low, moderate and high flows.

Figure 3 compares statistical distributions of the
historic natural flow data points represented as dots
with a standard regression model with a normally-
distributed residual. The solid line in Fig. 3 was created
by a model defined in Equation (3) where independent
variable xt represents flow at an upstream hydrometric
station in reference to the downstream station yt. It
demonstrates the changes to the distribution function
of historic natural flows imposed by the standard
regression model with respect to the target defined by
the historic data.

Figure 4 demonstrates that the change of the ran-
dom term from Equation (3) to the terms in Equations
(5), (6) and (7) provides a regression fit that is accep-
table and that does not require any additional fine-
tuning in most (over 90%) of the numerical experi-
ments in this study. The generated frequency distribu-
tion functions of modeled series (solid lines in Figs. 3
and 4) are produced from samples of 1000 generated
variables, using the Weibull plotting position formula.

Note that, although the refined model (Fig. 4) pro-
duces results that are much closer to the desired distri-
bution function, it may still generate imperfect extreme
high or low flow values. For example, the model could
generate negative low-flow values for streams with small
positive values in the historic record, and negative resi-
duals could have an absolute value higher than the
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Figure 3. Standard regression term: historic and generated cumulative frequency distribution.
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predicted low-flow targets. Therefore, function F1 has
a smaller expected value than F2 and F3 for negative
residuals, which minimizes the likelihood of high abso-
lute-value residuals, but it does not eliminate it. To
address this, the algorithm proceeds to fine-tuning
steps (typically only one such step is sufficient) which
was borrowed from earlier work (Ilich 2009), and which
is briefly explained in the following section.

4 Preserving historical statistical distribution

Following the initial application of the regression
model with partitioned residuals to generate the miss-
ing data series, the next step is to establish whether the
dependent variable yt generated by the proposed model
follows the desired statistical distribution. The first
indication that a correction is necessary is the presence
of negative values within the yt series. These negative
values could have been avoided by using the logarith-
mic transformation of the original data and developing
the regression model (4) using the transformed data.
However, this approach does not guarantee that the
reverse anti-log transformation required at the end of
the process would preserve the original historic distri-
bution of each data series with missing data.

Fitting historic data with statistical distribution of
the complete series after the gaps were filled may
include common statistical tests, such as the sum of
least squares of the differences between the cumulative
statistical distribution for the historic data and the
completed series after data in-filling. If this difference
is sufficiently small, missing data for the current vari-
able yt have been filled successfully and the algorithm

proceeds to the next variable. Otherwise, an adjustment
phase begins that may require one or more iterative
steps. This adjustment applies an established algorithm,
described in detail by Ilich (2009), that generates cor-
related random variables while retaining the desired
marginal distribution – this is its first application to
fill missing data. The algorithm is based on the theo-
rem that two arrays have the highest possible correla-
tion when their individual members are sorted in the
same sequence, as originally postulated and proved by
Whitt (1976). That approach was the basis of the first
successful algorithm for generating correlated random
variables with arbitrary statistical distributions (Iman
and Conover 1982). Steps of the adjustment procedure
are briefly outlined here; for a detailed description, see
Ilich (2009). In general, this adjustment involves ran-
dom generation of the entire target series such that it
conforms with the desired statistical distribution and
omits negative values. Further, some of its elements are
used to remove biases associated with standard regres-
sion models mentioned earlier in the paper (i.e. unde-
sirable positive threshold or occasional negative
values). The algorithm consists of the following steps:

a. Fit the model coefficients described in Equations
(1) and (4) with historic data to determine:
● regression coefficients bj,t and cj. in Equation

(1). These are determined by first developing
a correlation matrix calculated on the basis of
the available historical data at all stations. The
correlation matrix is then used as input for
calculation of the regression matrix coefficients
in Equation (1).
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Figure 4. Regression model with a modified residual function: historic and generated cumulative frequency distribution.
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● Construct ht in Equation (4) based on the
available historic data, and determine the sta-
tistical distribution of variable yt for all stations
by taking into account the available historic
data.

● Evaluate residual functions F1, F2 and F3 for all
stations that are identified as dependent (the
ones that require in-filling of missing data).

b. Generate a complete series that fills the missing
data for the first variable yt by using the regres-
sion model as per Equations (6), (7) and (8).
Check if the difference α between the regres-
sion coefficient r2 of the generated series yt and
the target regression rt

2 from the original his-
toric series is within a prescribed tolerance
limit (e.g. α = | rt

2 − r2 |/rt
2 ≤ 0.05). If so,

and if there are not negative values generated
within the yt series, move to the next series
with missing data, or exit if there are no
more series to process.

c. If α > 0.05 or if there were negative values gen-
erated in series yt in Step 2, use the following
correctional procedure: generate a desired num-
ber of flow data realizations of the random vari-
able yt′, which follows the kernel based
distribution function constructed using the avail-
able historic flow data and the extreme value
distribution that fills the tail ends. The approach
proposed by Moon et al. (1993) is used to com-
bine the kernel based distribution with the theo-
retical extreme value distributions on each tail
end, which are filled using extreme value type
I and III distribution for high and low probability
ends of the statistical distribution function. This
step will ensure there are no negative values in
the generated series and that the substitute series
has a desirable statistical distribution. This step is
executed only once, other steps will use different
permutations of random variable yt′ until
a satisfactory solution is found.

d. Determine the rank of the original data points in
both series yt and yt′ and replace the previously-
estimated missing yt data points with the yt′ data
points that correspond to the same rank in both
series, where rank refers to the ordered number
in their sorted sequence. This will produce an
update yt

u to the missing values of yt, where
possible negative values are replaced by the
small non-negative values obtained in Step 1
that fit the desired distribution function, without
any material change to the correlation obtained
in Step 1 based on the theorem postulated by
Whitt (1976).

e. Check if the difference α between the regression
coefficient r2 of the updated series yt

u and the
historic series ht is within a prescribed tolerance
limit (α ≤ 0.05). If so, the yt

u solution is accepted
and the algorithm moves to Step 1 for the next
variable. If not, the random term F in the general
model is modified such that the target correla-
tions are increased for new estimates yt″ by repla-
cing the modified random term F with (1− α)F,
which would reduce the regression error term,
and consequently increase the correlation
coefficient:

yt
00 ¼

Xn
j¼1

bj;txj;t þ c0 þ 1� αð ÞF (9)

a. Replace the values of yt′ with a new yt″ and repeat
steps 4–6 until the convergence criterion α ≤ 0.05
is satisfied. This will ensure compliance with
both the target correlation structure, as well as
with the desired statistical distribution. Normally,
convergence is achieved in a single iteration.

The above algorithm has already been tested on
a variety of statistical distributions (Ilich 2009),
although its earlier applications in previous studies
utilized standard normal distribution σi, of the residual
function, which often required several iterations to
achieve convergence. The use of data-driven residual
functions F1, F2 and F3 significantly simplifies this
process and typically generates a close match to the
desired statistical distribution fit after a single iteration.

5 Description of the test procedure and its
application to the Bow River Basin, Alberta,
Canada

A map of the Upper Bow River Basin with the relevant
hydrometric stations is shown in Fig. 5. Most Bow
River Basin runoff originates in the upstream portion
of the basin, and the portion downstream from the
confluence with the Highwood River is non-
contributing. Therefore, only one station from the
downstream section is included in this study; that sta-
tion, at Crowfoot Creek (not shown in Fig. 5), repre-
sents only about 0.6% of the total annual Bow River
Basin flow. Further, most flow series used as input in
this study are naturalized flow records, where the effect
of regulation was removed in previous studies. Flows
for the Bow River at Banff are a sum of natural flows at
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the Spray River tributary and the Bow River at Banff
above the confluence with the Spray River.

The record length for the selected hydrometric stations
varies both in terms of the starting date and the frequency
and duration of missing data. Table 1 summarizes the
data availability and shows that more than half of the
stations have complete data between 1930 and 2014, in
part because of earlier efforts by Alberta Environment
and Parks (AEP, a Provincial Government Agency in
charge of water resources management) to naturalize
historic flow series, where sporadic missing data for
some stations were filled by routing flows from upstream
stations and adding estimates of local runoff. The main
gaps are associated with different starting dates of hydro-
metric-station operation.

The accuracy of the data in-filling process can be
ascertained by removing selected years from the his-
toric series, generating data estimates using other sta-
tions where data are available, and then comparing the
estimates with the actual historic record. Such compar-
isons should yield particularly close results if other
nearby stations are highly correlated to the station
where missing data were artificially created for test
purposes. To this end, a cross-correlation matrix for
data at all hydrometric stations is given in Table 2,

where the station numbers are linked to the names in
Table 1 in the same order of appearance. Since the
approach is based on the statistical dependence of the
selected station on data from other stations in the same
basin, the quality of the results would be expected to be
higher where a strong correlation exists between the
generated data and the reference stations used for data
in-filling. For example, correlation between the Bow

Figure 5. Upper Bow River Basin with locations of selected hydrometric stations.

Table 1. Data availability in the Upper Bow River Basin.
Station
no.

Station Years with missing data
in 1930–2014 period

1 Bow River at Bearspaw Reservoir
2 Bow River at Ghost Dam
3 Bow River below Kananaskis

confluence
4 Kananaskis River at Barrier Lake
5 Bow River below Spray River

confluence
6 Lake Minnewanka Inflow
7 Spray Lake Inflow 1931, 1932, 1939–1975
8 Upper Kananaskis Inflow 1930–1974
9 Lower Kananaskis Inflow 1930–1950
10 Fish Creek at the mouth* 1951–1955
11 Elbow River at Glenmore Dam
12 Highwood River at High River*
13 Highwood River at the mouth* 1930–1974
14 Crowfoot Creek at the mouth* 1930–1950
15 Nose Creek at the mouth*

*Denotes tributaries without flow regulation

HYDROLOGICAL SCIENCES JOURNAL 1753



River at Bearspaw Dam in Calgary (Station 1) and at
the Ghost Dam (Station 2) some 35 km upstream is
very high, at 0.996, which results in good agreement
between the historic and predicted (simulated) data
when Station 1 data are used to in-fill missing values
in the Station 2 record. Figure 6 compares the Bow
River historic flows for the 2010–2012 period, with the
flows generated under the assumption the 2010–2012
data were missing. It shows that the proposed model
can predict missing flow data with reasonable accuracy
for instances where data are available at adjacent sta-
tions that are highly correlated with the target station.
A similar close agreement occurs when multiple sta-
tions are used to fill the missing data. Stations num-
bered 1–9 are located within the City of Calgary or
upstream of it, while the remaining stations (10–14) are
located downstream of the City of Calgary. Stations 14
and 15 have very small flows compared to other sta-
tions which exist only during the open flow season.
Although only the positive flows were used to calculate
correlations, these two stations have low correlations
with other stations.

Further, in some instances of high correlation
between the selected station and several other stations
in the basin, historic data for certain years occasionally
reveal odd patterns, which implies either a systematic
error in the measurements or, more likely, uncertain-
ties in the calculations for naturalized flows. An exam-
ple of such a pattern is visible at the Spray River at
Spray Lake (Station 7 in Table 2), where the historic
series included flow naturalization based on historic
lake levels and inflow data. In this case, uncertainties
may be related to the lake level measurements or the
absence of accurate precipitation data for this lake (the
nearest meteorologic station is some 40 km away).
Also, a large lake volume in combination with rela-
tively small inflows implies that even small errors in
recorded water levels can have significant effects on the
accuracy of the calculated natural flows. The same test
which assumed missing data for several selected years
and then compared the results of predicted values to
the actual historic record revealed excellent agreement
in most years, but a probable anomaly in the recession
limb of the 2011 hydrograph, as depicted in Fig. 7.

Table 2. Cross-correlation coefficients of historic data at all hydrometric stations.
Stn 1 Stn 2 Stn 3 Stn 4 Stn 5 Stn 6 Stn 7 Stn 8 Stn 9 Stn 10 Stn 11 Stn 12 Stn 13 Stn 14 Stn 15

Stn 1 1.000 0.996 0.988 0.893 0.968 0.952 0.953 0.910 0.456 0.795 0.766 0.685 0.858 0.175 0.142
Stn 2 1.000 0.995 0.890 0.978 0.951 0.963 0.914 0.419 0.771 0.750 0.668 0.864 0.166 0.131
Stn 3 1.000 0.886 0.985 0.943 0.969 0.911 0.378 0.740 0.732 0.657 0.871 0.158 0.119
Stn 4 1.000 0.843 0.833 0.936 0.923 0.464 0.755 0.750 0.646 0.889 0.123 0.110
Stn 5 1.000 0.925 0.979 0.898 0.310 0.697 0.693 0.628 0.855 0.155 0.106
Stn 6 1.000 0.928 0.846 0.441 0.818 0.796 0.701 0.823 0.156 0.138
Stn 7 1.000 0.878 0.430 0.697 0.725 0.692 0.855 0.157 0.177
Stn 8 1.000 0.387 0.680 0.649 0.623 0.871 0.163 0.171
Stn 9 1.000 0.738 0.617 0.636 0.390 0.201 0.272
Stn 10 1.000 0.900 0.757 0.668 0.210 0.198
Stn 11 1.000 0.797 0.663 0.177 0.151
Stn 12 1.000 0.644 0.168 0.163
Stn 13 1.000 0.117 0.159
Stn 14 1.000 0.247
Stn 15 1.000

Figure 6. Bow River at Ghost Lake: historic vs simulated flows.
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Here, the historic natural flows in August of 2011 are
close to zero in spite of all adjacent stations showing
significantly higher flows. Typical flows in this period
for other years are over 10 m3/s. This result indicates
a possible need to re-examine the lake balance calcula-
tions used to reconstruct the natural flows for 2011.

6 Extension to data generated with tree-ring
proxy series

The proposed algorithm achieves the stated goals of (1)
producing complete continuous series for each station
with the same statistical distribution as the original
series, while also (2) preserving other statistical proper-
ties such as cross-correlations and autocorrelations.
This section illustrates its extension to the results of
Sauchyn et al. (2014), and Sauchyn and Ilich (2017).
Sauchyn et al. (2014) used tree-ring data as a proxy to
develop annual flow estimates at several locations in
Alberta, including the City of Calgary. Figure 8 shows

the fit between historic and simulated annual flows for
the City of Calgary obtained from a regression model
that used statistical dependence between tree-ring data
and annual flows over the past 100 years.

This statistical relationship used the tree-ring data to
reconstruct annual flows back to the year 1111. However,
because annual flows at a single site are of limited use, it
was necessary to first break down this annual series into
weekly values using a decomposition algorithm devel-
oped for that purpose (Sauchyn and Ilich 2017), and
then to use the resulting weekly 1111–2014 flow series
at the City of Calgary as a basis for in-filling missing data
for the remaining 14 upstream locations, including both
the main stem and the tributaries. This paper presents
only the general conceptual approach used to decompose
the annual flows using the tree-ring proxy.

The principal aim of the flow data extension is to
develop a statistical relationship between the tree-ring
thickness data and the annual flow volumes for the
historic years when both are available, as shown in

Figure 7. Spray River at Spray Lake: historic vs simulated flows.

Figure 8. Annual flows at the Bow River at Calgary (observed and simulated using tree rings). Reprinted with permission from
Sauchyn et al. (2014).
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Fig. 8. This relationship can then be used to back-cast
the sequence of annual flows based on a given tree-ring
series, which may exceed 1000 years for some trees.
Such annual series are of value because they contain
information on the duration of multi-year droughts
and wet periods that are typically more severe than
those in a much-shorter historic record. Of particular
interest are the duration and severity of dry year
sequences that may be longer than those in the historic
record.

As an example, after the extended annual flow esti-
mates were generated from the tree-ring data, they
were decomposed into weekly flows through
a relatively simple boot-strapping method. Sauchyn
and Ilich (2017) provide further information on the
procedure, which is briefly summarized here:

(1) Generate a large number (typically 10,000 years)
of hypothetical years of weekly flow series such
that the weekly flows are mutually correlated
from week 1 to week 52 and follow the same
weekly flow distribution function. This step uses
an approach described in previous publications
(Ilich 2009, 2013).

(2) Select and re-arrange a subset of 904 years of
data from the pool of all 10 000 generated years
that satifies the following two criteria
simultaneously:
● The sum of all weekly flows are close to the

annual flow volume predicted from the tree-
ring data;

● The correlations between the transitional
weeks – those between the previous and cur-
rent years – are similar to the historic correla-
tions for the same transitional weeks (e.g.
weeks 48–52 of year i – 1 should be correlated
to weeks 1–4 of year i with similar correlation
coefficients as in the historic series).

A number of verification statistics to verify success of
the above procedure are presented in the referenced
publication (Sauchyn and Ilich 2017). An example of
the approach here uses estimates of weekly flows gener-
ated for the Bow River at Calgary from 1111 to 2014 as
a basis to in-fill missing weekly flows for the other 14
stations to the same year, thus completing a weekly flow
series for 15 stations over the 904-year period. Such
long-term data should form a valuable input to various
river basin planning studies, particularly because they
provide more variability than the standard historic data
series. The statistical results of this exercise are summar-
ized in the following tables, which compare both cross-
correlations and autocorrelations between the historic
and the entire generated series. Close proximity of the
cross-correlation coefficients between the historic
(Table 2) and simulated (Table 3) series is demonstrated
by comparing the entries in these two tables. This com-
parison indicates that the in-filled flow series have pre-
served the statistical correlation structure between the
stations, which is one of the key goals of the algorithm.
Other relevant statistics, such as the comparison of
means and standard deviations, are shown in Table 4,
while Tables 5 and 6 compare the autocorrelation of
historic and simulated series for up to 10 weeks at all
15 stations. For instances where close to 100 years of
historic data have reasonably close mean values to the
means of the simulated annual flows based on the tree-
ring data, a close correspondence is expected between
the weekly statistics of the historic and in-filled series.

7 Conclusions and recommendations

This paper proposed a relatively simple and effective
algorithm for the in-filling of missing hydrologic data,
based on its statistical dependence with other available
hydrologic series. Although essentially based on multiple
regression, the algorithm removes typical shortcomings

Table 3. Cross-correlation coefficients of simulated data (1111–2014) at all hydrometric stations.
Sim. Stn 1 Stn 2 Stn 3 Stn 4 Stn 5 Stn 6 Stn 7 Stn 8 Stn 9 Stn 10 Stn 11 Stn 12 Stn 13 Stn 14 Stn 15

Stn 1 1.000 0.995 0.992 0.953 0.983 0.975 0.936 0.925 0.495 0.806 0.821 0.776 0.871 0.196 0.121
Stn 2 1.000 0.997 0.950 0.988 0.974 0.939 0.927 0.479 0.795 0.803 0.752 0.870 0.192 0.118
Stn 3 1.000 0.944 0.993 0.967 0.941 0.923 0.451 0.772 0.790 0.740 0.872 0.185 0.115
Stn 4 1.000 0.923 0.939 0.896 0.938 0.509 0.814 0.821 0.775 0.858 0.185 0.113
Stn 5 1.000 0.954 0.937 0.906 0.431 0.749 0.767 0.717 0.860 0.183 0.113
Stn 6 1.000 0.922 0.897 0.508 0.840 0.842 0.796 0.848 0.185 0.115
Stn 7 1.000 0.906 0.397 0.728 0.758 0.721 0.865 0.173 0.112
Stn 8 1.000 0.538 0.755 0.767 0.745 0.881 0.198 0.126
Stn 9 1.000 0.709 0.619 0.607 0.493 0.232 0.140
Stn 10 1.000 0.904 0.864 0.705 0.234 0.133
Stn 11 1.000 0.915 0.729 0.209 0.121
Stn 12 1.000 0.707 0.212 0.118
Stn 13 1.000 0.169 0.113
Stn 14 1.000 0.510
Stn 15 1.000
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of regression techniques associated with fixed thresholds
and occasional negative values. Most importantly, the
algorithm preserves the statistical distribution of the pre-
dicted series, as well as all other relevant statistical depen-
dence among related hydrologic time series, as
demonstrated by the numerical examples presented in
this paper.

The proposed approach can be both robust and effec-
tive. It can also be combinedwith othermodels, such as one
that generates weekly flow estimates that comply with
annual tree-ring signals, so as to give lengthy hypothetical
flow series that preserve statistical distributions of historic
flows and their correlation structure. For the Bow River
Basin, 904 years of weekly streamflows were in-filled at 14
stations based on a single station whose data were gener-
ated using tree-ring data and the available historic records.

The main shortcoming of the algorithm is that it
cannot handle time periods that lack data points for all
stations within a study region. However, this problem
can be rectified through input data preparation that

uses other existing methods to complete data for at
least one dominant station that is highly correlated to
other stations.
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Table 4. Comparison of relevant statistics of the historic and simulated series.
Stn 1 Stn 2 Stn 3 Stn 4 Stn 5 Stn 6 Stn 7 Stn 8 Stn 9 Stn 10 Stn 11 Stn 12 Stn 13 Stn 14 Stn 15

Historic data (1930–2014)
Min 12.19 8.32 4.81 0.62 7.87 0.00 0.20 0.13 0.00 1.02 0.31 0.00 0.00 0.00 0.00
Avg 86.75 82.85 74.19 14.91 53.05 8.31 11.67 7.63 0.85 9.34 12.38 20.37 3.66 1.00 0.53
Max 1058.8 902.03 775.49 220.88 424.69 130.04 121.62 69.97 65.24 249.80 258.16 629.58 36.20 58.43 27.28
StDev 80.12 76.67 72.53 12.78 56.17 9.65 13.43 7.33 2.19 10.87 19.79 34.80 3.57 2.63 1.34

Simulated data (1111–1929)
Min 4.28 6.76 3.07 0.48 4.81 0.00 0.20 0.08 0.00 1.21 0.31 0.00 0.00 0.00 0.00
Avg 87.14 82.70 74.29 14.86 53.20 8.31 12.33 7.60 1.02 10.07 14.15 24.02 3.79 1.00 0.68
Max 1073.47 1023.88 925.40 231.98 557.62 164.42 152.31 88.61 80.44 327.12 293.70 803.64 48.39 74.65 35.68
StDev 86.00 77.82 74.11 12.92 57.44 9.83 13.85 7.54 2.46 11.09 19.83 35.03 3.58 2.60 1.44

Table 5. Historic autocorrelations for all stations (1930–2014).
Lag Stn 1 Stn 2 Stn 3 Stn 4 Stn 5 Stn 6 Stn 7 Stn 8 Stn 9 Stn 10 Stn 11 Stn 12 Stn 13 Stn 14 Stn 15

1 0.90 0.91 0.91 0.86 0.92 0.86 0.84 0.90 0.44 0.75 0.86 0.81 0.81 0.44 0.81
2 0.81 0.81 0.82 0.75 0.83 0.74 0.78 0.82 0.36 0.63 0.71 0.67 0.69 0.17 0.61
3 0.70 0.71 0.71 0.64 0.73 0.64 0.72 0.74 0.28 0.53 0.59 0.55 0.58 0.12 0.49
4 0.60 0.61 0.61 0.53 0.63 0.53 0.65 0.65 0.21 0.42 0.46 0.43 0.48 0.06 0.38
5 0.49 0.50 0.49 0.41 0.52 0.43 0.58 0.55 0.14 0.33 0.34 0.32 0.38 0.03 0.31
6 0.39 0.39 0.39 0.31 0.41 0.32 0.52 0.46 0.13 0.26 0.24 0.24 0.28 0.03 0.26
7 0.29 0.29 0.28 0.21 0.31 0.23 0.45 0.35 0.11 0.20 0.15 0.16 0.18 0.04 0.22
8 0.20 0.20 0.19 0.13 0.21 0.16 0.40 0.26 0.10 0.15 0.08 0.10 0.09 0.03 0.20
9 0.12 0.12 0.11 0.06 0.13 0.09 0.35 0.18 0.06 0.10 0.02 0.05 0.02 0.02 0.18
10 0.05 0.05 0.04 0.00 0.05 0.03 0.31 0.11 0.03 0.06 −0.02 0.01 −0.04 0.02 0.16

Table 6. Autocorrelations of simulated series (1111–2014) for all stations.
Lag Stn 1 Stn 2 Stn 3 Stn 4 Stn 5 Stn 6 Stn 7 Stn 8 Stn 9 Stn 10 Stn 11 Stn 12 Stn 13 Stn 14 Stn 15

1 0.90 0.90 0.90 0.82 0.90 0.85 0.87 0.81 0.56 0.73 0.76 0.70 0.85 0.52 0.75
2 0.80 0.81 0.80 0.71 0.81 0.74 0.76 0.73 0.27 0.55 0.57 0.51 0.70 0.15 0.47
3 0.70 0.71 0.71 0.61 0.72 0.63 0.66 0.64 0.18 0.42 0.44 0.38 0.58 0.07 0.29
4 0.59 0.61 0.60 0.51 0.61 0.53 0.56 0.54 0.14 0.34 0.34 0.29 0.49 0.06 0.18
5 0.49 0.50 0.50 0.41 0.51 0.43 0.46 0.45 0.10 0.26 0.25 0.21 0.39 0.04 0.12
6 0.39 0.40 0.40 0.32 0.41 0.33 0.36 0.35 0.06 0.19 0.18 0.15 0.30 0.03 0.08
7 0.29 0.31 0.30 0.24 0.31 0.24 0.27 0.27 0.04 0.14 0.12 0.10 0.22 0.03 0.06
8 0.21 0.22 0.22 0.17 0.23 0.17 0.19 0.19 0.02 0.09 0.08 0.06 0.15 0.04 0.05
9 0.14 0.15 0.14 0.11 0.15 0.10 0.11 0.12 0.01 0.06 0.04 0.03 0.09 0.03 0.04
10 0.07 0.07 0.07 0.05 0.07 0.04 0.05 0.06 0.00 0.03 0.01 0.01 0.03 0.02 0.03
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