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Abstract A new method is presented to generate stationary multi-site hydrological time series. The proposed method
can handle flexible time-step length, and it can be applied to both continuous and intermittent input series. The
algorithm is a departure from standard decomposition models and the Box-Jenkins approach. It relies instead on the
recent advances in statistical science that deal with generation of correlated random variables with arbitrary statistical
distribution functions. The proposed method has been tested on 11 historic weekly input series, of which the first seven
contain flow data and the last four have precipitation data. The article contains an extensive review of the results.

Key words stochastic hydrology; correlated random variables; time series; empirical distribution

Un algorithme efficace en trois étapes pour la génération stochastique multi-sites de séries
chronologiques hydrologiques hebdomadaires

Résumé Nous présentons une nouvelle méthode de génération de séries chronologiques hydrologiques multi-sites
stationnaires. La méthode proposée peut gérer différentes durées du pas de temps et elle peut étre appliquée a des
séries d’entrée continues ou intermittentes. L’algorithme est différent des modéles de décomposition standard et
de I’approche de Box-Jenkins. Il s’appuie au contraire sur les derniéres avancées statistiques traitant de la
génération de variables aléatoires corrélées de fonctions de distribution statistique arbitraires. La méthode
proposée a été testée sur 11 séries d’entrée historiques hebdomadaires, sept étant des données de débits, et quatre
des données de précipitations. L’article présente une analyse approfondie des résultats.

Mots clefs hydrologie stochastique ; variables aléatoires corrélées ; séries chronologiques ; distribution empirique

INTRODUCTION

Ability to generate random times series that closely
represent hydrological processes has been the main
raison d’étre of stochastic hydrology. Possible appli-
cations for using the stochastic series as alternative
inputs abound, ranging from studying operation of
reservoirs, drought management, alternative input
into water quality studies, or design of new hydraulic
structures within the multi-purpose stakeholder fra-
mework associated with modern water resources sys-
tems. Stochastic hydrology holds out a promise of
providing input data variations that are statistically
likely to occur, but are also more challenging to

© 2013 IAHS Press

manage than those seen in the historic record, in
terms of either the magnitude of individual events
or their duration, as in the example of back-to-back
dry years. This added challenge is implicitly con-
tained in up to 1000 hypothetical years of generated
data, which provide more reliability for designing
new system components and for analysing perfor-
mance of the entire system in various management
scenarios (see e.g. Nalbantis and Koutsoyiannis
1997, Langousis and Koutsoyiannis 2006).

Some of the pioneering advances in the devel-
opment of stochastic hydrology go back to the 1960s
(Thomas and Fiering 1962, Matalas 1967). A turning
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point was the publication by Box and Jenkins (1970)
on time series analyses, which has subsequently had
a profound impact on research in this field, although
this work was primarily motivated by applications of
random time series in finance. Since both the cyclical
and seasonal statistics of the generated time series
should be similar to historic series, applications of
Box—Jenkins models in hydrology were combined
with the so-called disaggregation models. In this
approach, annual flow series are generated first, mak-
ing sure the annual statistics are on target, and then
they are broken into seasonal (typically monthly)
time steps using various disaggregation algorithms
(Valencia and Schaake 1973, Mejia and Rousselle
1976, Koutsoyiannis 2001). A comprehensive review
of the history of previous efforts is provided by
Srinivas and Srinivasan (2005).

There is currently no universally accepted meth-
odology or model for generation of stochastic time
series that has gained widespread acceptance among
hydrologists. The contending issues can be listed as
follows:

(a) flexible time-step resolution: it would be ideal
to have a model that can develop either
monthly, weekly or daily stochastic series on
the basis of the same historic daily input flow
series;

(b) handling of dry regions which have legitimate
zero flows in some periods and in some years,
while, in other years, flows may be positive all
year round;

(c) detection and inclusion of long-term annual
cycles into modelling, originally propounded
by Hurst (1957), known as the Hurst phenom-
enon and subsequently studied worldwide on the
basis of associated indicators (see e.g. Langousis
and Koutsoyiannis 2006). Closely related to
this is the unresolved argument among research-
ers and practitioners on the importance of sto-
chastic modelling of non-stationary processes
and their proper representation (see e.g.
Koutsoyiannis 2003, 2006, Koutsoyiannis et al.
2009).

This study presents a model that is restricted to the
generation of stationary time series. While the exis-
tence of long-term cycles is acknowledged, especially
in view of the recent studies on the effects of climate
change, most hydraulic structures have a design life-
time of less than 150 years. A range of assumptions
on the possible changes to the statistical distribution
of historic flows can be incorporated in the

generation of a family of stationary stochastic series,
each representing a possible state with respect to the
anticipated flow conditions in the near future.
Inclusion of a trend, such as the steady reduction of
runoff in a stochastic series that is 1000 years long,
may actually lead to complete absence of any flows
well before the 1000-year limit is reached.
Consequently, modelling of stationary series adjusted
to statistically represent the anticipated flows during
the lifetime of a contemplated structure is typically
preferred among practitioners.

Even when discussion is limited to stationary
models, one cannot help but notice the lack of a
generally accepted approach that would handle both
the issues outlined under (a) and (b) above. After
almost 50 years of research in this field and numer-
ous publications, a stochastic model that is easy to
understand, use, and widely accepted as the industry
standard, does not yet exist. In other words, there is
no stochastic time series generation model which
would represent to hydrologists what HEC-RAS
represents to river engineers. It could be argued that
part of the problem may have been a too narrow
focus on the combination of the decomposition prin-
ciple coupled with the Box—Jenkins modelling
approach. This approach has its limitations, while
other radically different and promising ideas have
perhaps been explored with a fraction of the effort
so far. Multi-site generation models presented in the
past have mainly been restricted to monthly time
steps, typically using decomposition in combination
with the AR(1) or ARMA(1) monthly model due to
the difficulties of modelling auto-regressive depen-
dence of higher orders. As documented by Bras and
Rodriguez-Iturbe (1985), classical time series models
involve significant effort and knowledge to identify
the appropriate model and estimate its parameters, as
well as to assess the shape of the multivariate prob-
abilities and their transformations from normal to
skewed distributions. Srinivas and Srinivasan (2005)
point out that, in spite of the numerous reports on
models in stochastic hydrology, none has gained
universal acceptance. In fact, the US Bureau of
Reclamation (USBR) uses a simple approach of recy-
cling subsets of historical flow series, an approach
known as the index sequential sampling (ISM)
method (Kendall and Dracup 1991), rather than rely
on any of the complex models which have been the
subject of so much research in the past few decades.
Lee and Salas (2008) experimented with using copu-
las in stochastic streamflow generation; however,
they limited their work to the generation of annual
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series. While some of the ideas they presented were
similar to the ideas in this article, they miss the
opportunity to use the full potential of handling
multi-site generation of monthly or weekly flows.
Similarly, Tasker and Dunne (1997) have proposed
a non-parametric method for multi-site generation of
streamflow series, although they have restricted it to
modelling of monthly residuals. A general, non-para-
metric approach independent of the time-step length
or the type of the hydrological series to be modelled
(continuous or intermittent) and free from cumber-
some calibration and the disaggregation step has yet
to emerge. The work presented here relies on recent
advances in statistical science related to the genera-
tion of random variables with skewed distribution
functions and a given correlation matrix which repre-
sents their statistical interdependence. This article
extends these developments by adding one more
step, which enables these models to generate random
time series with given seasonality and periodicity,
while preserving the desired skewed distributions
and desired statistical dependence among them.
Initially published in 2008 (Ilich and Despotovic
2008), the ideas were further improved in all three
phases of the algorithm and verified on test runs that
are significantly larger than those reported in 2008.
The following section provides an introduction to the
necessary statistical theory that serves as the back-
ground of the algorithm. This is followed by a more
detailed description of each phase of the algorithm,
while the final section provides an overview of two
test runs which were based on hydrological data from
southern Alberta, Canada.

THEORETICAL BACKGROUND

Simulation models used in a variety of industries,
ranging from engineering to finance, often generate
random variables with a desired statistical distribu-
tion function that are an essential component of the
modelling process. Moreover, it is frequently neces-
sary to generate several random variables that have
different statistical distribution functions, while they
are also statistically dependent, as defined by their
correlation matrix. Iman and Conover (1982) pub-
lished an article which provided a breakthrough in
this kind of modelling. Numerous refinements to the
idea followed (Cario and Nelson 1996, 1997), and
the most recent one provides more control of the
accuracy of the fit for each individual random vari-
able (Ilich 2009). However, all of these algorithms

are based on the notion that random variables with
normal distribution and a desired correlation structure
can be generated and that such random variables can
then serve as a key to re-ordering the previously
generated random variables with the appropriate
skewed distribution, such that they too comply with
the desired correlation structure. In other words, the
desired correlation structure is achieved by permuta-
tion of the previously generated skewed random vari-
ables, while the initial matrix with uniform
distribution serves as a guide to permutations. This
is essentially an iterative process, since some accu-
racy related to matching the target correlation matrix
is lost in the process of replacing the initially gener-
ated uniform variables by the respective random vari-
ables with skewed distribution. Like any other
iterative process, the solutions are not exact and are
subject to user-defined convergence criteria.
However, the idea is simple and powerful, and rea-
sonable solutions can be obtained for hundreds of
random variables simultaneously within minutes.

In their work, Iman and Conover (1982) describe
an algorithm for re-ordering elements of random
vectors with desired skewed distributions such that
their Spearman rank correlation matrix is the same as
the desired target. In this application, the work of
Iman and Conover has been modified to handle
Pearson’s correlation matrix as the desired target,
rather than the Spearman rank correlations. The prin-
ciple is similar, with a somewhat larger loss of accu-
racy when fitting the Pearson correlations. There are
two ideas which are essentially the basis of the pro-
posed algorithm. The first is a theorem originally
proved by Whitt (1976), which states that the highest
correlation among two independent random vectors is
obtained if they are both re-arranged in a sorted
order. This can be used effectively in hydrology.
For example, if a desired probability distribution
function of historic flows y; in week i for a particular
site is known based on historic data, we can then
generate n independent random variables Y; of these
flows that fit this distribution. Assume that » random
sample flows X; have already been generated for the
previous week and for the same site. It is possible to
generate n estimates of hypothetical flows Y by
using the known regression parameters in an auto-
correlation function developed on the basis of his-
toric flows x; and y; in two subsequent weeks, as
shown in equation (1):

Y] = a,X; + a1 + N[0, ¢,] 1



88 Nesa llich

There are two shortcomings when it comes to auto-
regressive flows Y. The first is that, for a large
sample size, ¥; has a normal distribution, instead of
the desired known distribution which is typically
skewed. The other is that there is a possibility that
some sampled values of Y are negative, due to the
normalized random term A, which can be negative.
Neither of those two outcomes is desirable in hydrol-
ogy. However, one useful property of autoregressive
flows Y/ is that they have a desired correlation to
flows X; from the previous week. If we re-arrange
the elements of the original flows Y; such that they
have the same order as the elements of Y}, then the
correlation structure between X; and Y; will be close
to the target developed from historic data, while the
resulting flows Y; will preserve their original distribu-
tion which excludes negative values. Re-arranging
the elements of ¥; is a simple process of finding the
rank k£ for the minimum value in Y}, placing the
minimum value of ¥; in the kth position, and proceed-
ing in the same way for all other elements, from the
second smallest to the largest. In other words, the
elements of Y; are permuted using the rank order of
the elements of Y} as their permutation key. Since
some of the dispersion may be increased once all
elements of normally distributed Y, have been
replaced by the elements of a skewed distribution

, it may be necessary to assume a small reduction
in the initial value of the random term A, such that
the final correlation between X; and Y; fits the desired
target. The proper value of the standard deviation of
N can be found iteratively. Once the desired permuta-
tion of X; and Y; has been achieved, the model can
use multiple regression to proceed, such that flows X;
and Y; from the first two weeks are independent vari-
ables, while the flow Z; in the third week is dependent,
and the transformation between Z; and Z'; can proceed
in the same manner as for Y; and Y. This is a flexible
approach that has been tested successfully on a num-
ber of skewed distributions and a combination of both
positive and negative correlations (Ilich 2009).
However, the method of Iman and Conover (1982) is
more robust and provides quicker solutions to large-
scale problems, although it does not have the same
kind of flexibility for achieving fitness of each indivi-
dual random variable. In spite of this, the proposed
method has several advantages over the earlier method
of Ilich (2009):

(a) Each iteration resets all target correlations within
the variables that have not managed to converge
in the previous iteration, as opposed to the much

slower convergence process that had to tackle
each variable (weekly flow) on an individual
basis. This results in solution times that on
large-scale test runs are up to two orders of
magnitude faster than the previous version.

(b) This approach does not ignore correlations that
are below the user-specified threshold, as
opposed to the earlier method, since this method
automatically attempts to fit the entire correla-
tion matrix simultaneously. This avoids the sud-
den drop between the -correlations of the
simulated series that are above the user-defined
threshold (e.g. 0.5) and below, which was a
shortcoming of the previous algorithm.

(c) Other improvements in Phase 3 of the previous
algorithm allow more flexibility when it comes
to the selection of the final sequence of years,
such as the new weight factors that can give
more importance to stations that exhibit slower
convergence, or parameters that alter the signif-
icance of annual auto-correlation versus the cor-
relation of weekly flows that are associated with
transition from year i to year i + 1.

Instead of dealing with each random variable indivi-
dually, the method of Iman and Conover proceeds on
the premise of the development of an entire random
matrix with a desired correlation structure, and then
uses the columns of this matrix as a key to re-order-
ing individual random variables that had previously
been generated independently on the basis of their
distributions. They begin by defining an n-dimen-
sional random vector X as a vector whose correlation
matrix is I (that is, elements on the main diagonal
are 1, while all other elements are zero, implying that
elements of X are not correlated). Let C be the
desired correlation matrix of some transformation of
X. A new matrix X’ = XP' can be created since P’ can
be determined from the desired correlation structure
C using a Cholesky factorization. This results from a
known theorem in statistical science which served as
the basis for the algorithm proposed by Iman and
Conover (1982). This theorem is referenced in their
article and covered in detail by the background work
cited therein. Matrix X’ can then be used as a key for
re-ordering any matrix of the same size to fit the
desired correlation structure. This is the basis of the
algorithm, and it implies an iterative procedure, since
after recalculating the correlation matrix of the origi-
nal elements that had been permuted, the resulting
correlation matrix may not be exactly the same as the
target correlation matrix. This may require additional
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STATION 1 STATION 2 STATION 3
Year Weeks Weeks Weeks
1 2 . . 52 1 2 52 1 2 . . 52
1933 X4 X2 Xis . Xiso | Xisa | Xisa Xia0a | Xiaos | Xiaos | Xior X, 158
1934
1935
1936
1937
1938 X,
1999
2000
2001 .
2002 Xonn
Correlation Matrix
STATION 1 STATION 2 STATION 3
variable Variable number Variable number Variable number
T 2] 3 ] .52 | 53] 54 | . [ 104 | 105 | 106 | . | 155156

1 1 %12 | %13 O152 | %153 | P14 T1104 | %1105 | T1106 | P07

2 T12 | 1 T23 O252 | 253 | Jas4 T2104 | %2105 | Opq05 | T2107

3 O13 | O23 1 03,107

4 1

5 1

6 1

1
155 1
156 1

Fig. 1 Matrix representation of generated data.

iterations such that the target correlations that were
not fitted well initially are modified to ensure better
fitness. Consider the hypothetical results of generated
weekly flow data for three sites and their target
correlation matrix in Fig. 1, which depicts the gener-
ated data in a matrix format along with the corre-
sponding correlation matrix below. Note that since it
is well known that the correlation matrix is symme-
trical around the main diagonal whose elements are
set to 1, it is common practice in the literature to
show the correlation matrix as the upper or lower
triangular matrix for reasons of clarity.

Columns X; in this matrix represent flows gen-
erated individually for each week and for each of the
three stations, based on their respective statistical
distribution functions. How these functions are con-
structed is explained in more detail in the next section
of this article. Assume that the flows in each of the
weeks have been successfully permuted such that the
resulting correlation matrix is close to the target
correlation matrix, which is calculated on the basis

of historic natural flow data. This has several pro-
found implications:

(a) A good match of correlation o;, implies pre-
served auto-correlation between flows in week 1
and 2 at the first station. Similarly, a good match
of correlations os354 and oy9s,106 implies pre-
served auto-correlation of the first order for
weeks 1 and 2 at Stations 2 and 3, respectively.

(b) A good match of correlation o3 and 0,3
implies preserved auto-correlation of both first
and second order for the first station, i.e. flows
in week 3 for Station 1 are auto-correlated to
flows in both weeks 1 and 2 for the same sta-
tion. The same principle holds for the other two
stations, and this observation extends to as many
significant lags that may be found in the historic
data based on the values of the correlation
coefficients.

(¢) In addition to auto-correlation, cross-correlation
between different stations is also preserved. For
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example, a good match of o,s3 and o 105
implies preserved cross-correlation for week 1
between flows on Station 1 and 2 and between
Stations 1 and 3, respectively. Moreover, cross-
correlations are also preserved with any signifi-
cant lag that may be found in the historic series
data, a feature that has been very difficult to fit
in other algorithms.

It is apparent that the above algorithms can generate
weekly flows with a desired statistical distribution
that is unique for each week, thus capturing the
seasonal nature of hydrological data, while at the
same time preserving all statistical interdependence
that may exist between the data within a year. The
resulting variables do not represent time series yet,
since the statistical dependence of flows at the end of
a particular year and the beginning of the subsequent
year have not yet been established. The principal
premise of the proposed algorithm is to find the
appropriate permutation of the entire rows X; of the
above matrix such that this condition can also be
satisfied. For a 1000 synthetic years of data, there
are 1000! combinations of possible sequences of
rows, so there are likely many solutions that would
fit this condition. A suitable sequence of years should
fit both the weekly statistics for all stations, as well as
the annual auto-correlation functions for any signifi-
cant lag. This essentially is the final step of the
proposed algorithm. More details on all three steps
are available in the following section. It should be
noted that the original work of Iman and Conover
(1982) has been modified here, by using the Pearson
product moment correlation instead of the Spearman
rank order correlation. This does not alter the theore-
tical basis of the approach, which is applicable to any
type of correlation matrix.

PROCEDURE

The basic idea of the algorithm involves three distinct
steps which are independent of each other, such that
each subsequent step builds on the solution from the
previous step without any negative impacts on it.
These steps are explained below.

Step 1: generate random variables

The first step generates randomly 1000 years of weekly
stochastic flows for each station that has the desired
statistical distributions. This could be done by treating
the data for each week as a sample for an independent

variable and by fitting a theoretical statistical distribu-
tion function using the maximum likelihood approach
and then running a Monte Carlo simulation for the
chosen distribution functions and its estimated para-
meters. However, theoretical functions do not always
fit the available data well. A non-parametric approach
that uses empirical distribution functions (Lall 1995)
has been emerging recently, with a potential to elimi-
nate possible problems in fitting theoretical functions to
historical data samples. One of the most popular is the
kernel density function, which is defined as a weighted
moving average of the empirical frequency distribution
of the available data (Sharma et al. 1997). The resultis a
distribution function guaranteed to fit the historical data
in the probability range for which the data are available,
and this virtually eliminates the need to run the good-
ness-of-fit tests required for fitting theoretical distribu-
tions. Much of the on-going research in non-parametric
density functions has been focused on the handling of
their tail ends. Lall (1995) provides a summary of
several reported approaches, of which the one proposed
by Moon et al. (1993) has been used in this work with
minor modifications. This approach employs theoreti-
cal distributions commonly used for rare events, such as
extreme value or log-normal, to fit the tail ends of the
statistical distribution function. The fitting algorithm
proposed by Moon was adjusted in this case to ensure
smooth transition from the empirical to the theoretical
part of the curve, by finding the intersection of the two
curves (theoretical and empirical) and by smoothing out
the region in the vicinity of the intersecting point if
necessary.

Figure 2 shows a comparison between log-nor-
mal and empirical distributions. The central region of
the graph, between the probabilities of 0.3 and 0.7,
shows a reasonably good fit with the observed data
for both distributions. However, log-normal overesti-
mates flows for regions below probability of 0.3 and
the flows are slightly underestimated for probabilities
between 0.7 and 0.9. On the high-flow side, the log-
normal distribution would provide a good tail end of
the empirical curve. On the low-flow tail end of the
curve, the fit is based on using the extreme value fit
for low flows with return periods of 100, 200, 500
and 1000 years, which are based on the available data
(there were 84 years of historic data for the numerical
examples presented in this article). Hence, to gener-
ate 1000 years of hypothetical flows for week 20 at
this station, the model generates 1000 random num-
bers (probabilities) with uniform distribution between
[0,1] and reads the appropriate flow value for each of
the generated probabilities.
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Weekly Average Flows for Week 20

400

¢ Raw Data
—— Empirical
—— Log-normal

300

250 A

200 -

Flow (m3/s~")

150 -

100 -
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S e e =

0 0.1 0.2 0.3 0.4

Fig. 2 Empirical and theoretical distributions of weekly flows.

Perhaps the most significant advantage of using
the empirical distribution is when it comes to gener-
ating stochastic data on rivers that may legitimately
dry out in some years—assume, for example, a case
where the flows are zero 30% of the time for a
particular week. While empirical distributions handle
this case with ease, eliminating the need to engage in
any functional fitting of the lower tail end, theoretical
distributions routinely fail to address this situation.
Step 1 is finished when 1000 years of hypothetical
flows are generated for all weeks and for all stations
using the above approach. These flows are indepen-
dent of each other. The following two steps will
introduce the necessary permutations of these flows
to induce the necessary statistical dependence.
Permutations only happen within the data generated
in a particular week, which implies that the statistical
distributions of the generated samples remain intact.

It should be noted that a close match in terms of
weekly statistics, such as mean, standard deviation,
skew and the overall fit of the weekly probability dis-
tribution functions, also implies a close match between
related annual statistics. Along with the mechanisms
incorporated in Step 3 explained below, this eliminates
the need for separate generation of annual time series
and subsequent use of decomposition.

Step 2: induce desired correlation structure

In this step, individual weekly flows are permuted
until a permutation for all flows with the desired
correlation structure is found. Assume that the

0.5 0.6 0.7 0.8 0.9 1
Probability

weekly flows for 1000 synthetic years created in
Step 1 have been saved in matrix R[n,1000], where
n is the product of the number of time steps within a
year (52) and the total number of stations where
flows are generated. Step 2 is then based on the
variation of the algorithm by Iman and Conover
(1982), and it consists of the following:

(a) Generate a uniform random matrix X[n,1000]
with all elements that are uniformly distributed,
i.e. X[i, j] ~ UJ0,1]. Elements of this matrix have
no mutual correlation.

(b) Calculate the target correlation matrix C based
on the available historic weekly flows for all
weeks and all stations. Skip the weeks with
missing data or zeros for those correlations that
are affected (in other words, use all available
years of data to calculate individual correlation
coefficients).

(c) Calculate the elements of matrix P’ where
C = PP'. This amounts to finding the square
root of the correlation matrix C using Cholskey
factorization. There are commercial DLL
libraries that can be called by the model to
provide smooth execution of this transformation.

(d) Create matrix X' = XP'.

(e) Create matrix R’ by re-arranging the orders of
the elements of matrix R created in Step 1 such
that they have the same ordering as matrix X'.
This is achieved in the following way: (i) find
the rank of each element along each column of
matrixes X' and R; and (ii) re-arrange elements
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of matrix X along each column such that the
rank order within each column of matrix X is
the same as the rank order of the elements in the
respective column of matrix R'. In other words,
if an element in the first column of matrix X'
had a rank j, then find the element in the first
column of matrix R with the same rank j and
place it in the same row that corresponds to the
row number of the smallest element in the first
column of matrix X. Repeat the process for all
elements of matrix X in the first column, and
then proceed with all other columns in this
fashion.

This procedure is used by Iman and Conover as
part of their algorithm; they refer to this step as
“the use of elements of matrix X’ as a key to re-
ordering the positions of the elements of matrix
R, resulting in matrix R"’. Due to the theorem of
Whitt (1976), mentioned earlier in this article,
the correlation matrix calculated among the vari-
ables of matrix R’ should have a close structure
to the target correlation matrix C.

(f) Since the column elements of R are not distrib-
uted uniformly, as are the elements of matrix X',
some deviation from the target correlations is
inevitable. In the final step of the algorithm,
the level of deviation is determined, and if it is
not acceptable a new target correlation matrix is
set with some correlations that are higher than
the original targets.

Then steps (b)—(f) are repeated. Hence, calculate the
correlation matrix €' of the transformed matrix R'. If
individual correlations are found with a difference
from the target correlations, create a new target cor-
relation matrix C” which is a merger of the original
target correlations from matrix C with some of its
elements modified using a procedure explained by
the following pseudo code:

it{C'[i,j] < (C[i,j] — )}

then C”"[i,j] = min{Cli,j] + (Cli,/] @)
— C'[i,j]),0.99}

else C"[i,j] = Cli,j]

The above threshold, a, is set by the user; the
suggested value is typically 0.05, while the upper
bound on setting the target is set to 0.99 given
that 1.0 is the maximum possible target

correlation. Steps (c)—(f) are executed repeatedly
and the process ends when no new improvements
are possible or after a user-specified number of
iterations.

As with most other numerical procedures,
simultaneous convergence on a large number of
variables is an issue. Most articles published in
statistical and mathematical journals cover this
issue in greater detail (Cario and Nelson 1996,
1997), but provide no universal recipe on how to
ensure smooth convergence. The problem arises
because some of the correlations that have con-
verged in previous iterations may violate the con-
vergence criteria in subsequent iterations. This
remains an area of active research in mathematics
and statistics. A typical threshold is the minimum
correlation examined for convergence of 0.5 or 0.4,
since correlations below those levels are not con-
sidered significant in hydrology, and they are
usually satisfied in this algorithm by default since
they are easy to achieve. Another user-defined
model parameter is the convergence criterion,
which represents the difference between the target
correlation calculated from historic data and the
final correlation achieved by the permutation of
the generated weekly flows. This parameter was
usually set to 0.05, implying successful convergence
if the difference between the two correlations is less
than 5%. The entire execution of Step 2 for this
problem takes about 10 s per iteration, and the
number of iterations is typically less than 5. Step
1 executes in less than 3 s. This approach to Step 2
is much more efficient than in the previous algo-
rithm (Ilich and Despotovic 2008), since the itera-
tive steps are applied on all variables at once (i.e.
the entire matrix), as opposed to each individual
weekly flow, as was the case earlier. The solution
times for this step are now faster than before by
an order of magnitude, even for medium-size
problems.

Step 3: convert generated random variables to
time series

Once the transformations in Step 2 have been com-
pleted, statistical dependence is established for all
random variables generated by the model within the
52-week periods. Consequently, flows in week 52 are
correlated to the flows in all previous weeks, includ-
ing both auto-correlations and cross-correlation
among the stations. What remains to be imposed is
the transition from year to year. In other words, the
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entire years of generated data have to be rearranged
such that their sequence guarantees that the relevant
weekly and annual statistics will be preserved for the
weeks that are associated with crossing from year to
year. In addition to the weekly statistics, the annual
auto-correlations should also be preserved, although
these auto-correlations usually show much lower sta-
tistical dependence, as will be demonstrated by the
numerical example in the subsequent section. The
problem can be described mathematically as combi-
natorial optimization that minimizes the following
objective function:

L
D=
p=1

+) " (ACH} — ACGf)’
=1

n—L 5
k
(pq,p - Ulr;-,p)
q=n—p

3

where 7 is the total number of time steps in a year (52
for weekly flows); p’;p is the historic weekly auto-
correlation between weeks ¢ and p for station £; a’;_p
is the generated weekly auto-correlation between
weeks ¢ and p for station k; L is the weekly lag
taken into account in transition from year to year;
ACH’,c is the historic annual auto-correlation function
for lag-1 and station k; and ACG;‘ is the generated
annual auto-correlation function for lag-1 and sta-
tion £.

A visual example of the correlations that are
included in the first summation term in equation (3)
is shown by the shaded “window” in Table 1. For
example, the first week of the subsequent year has
correlations of 0.72, 0.37, 0.27 and 0.28 with weeks
52, 51, 50 and 49, respectively. For generated series,
only correlations located within the Table 1 were
fixed in Step 2 and they remain unchanged in Step 3.

To extend the above objective function to multi-
ple stations, introduce a composite statistic D as a
sum of all individual terms Dy

D= ka @)
k=1

where 7 is the total number of stations being mod-
elled simultaneously. The objective of Step 3 is to
minimize D. It is also possible to define expression
(3) in other ways, without using the square function;
the absolute value or a simple difference between

Table 1 Historic correlations between two subsequent
years for Station C5AE27.

Week 49 50 51 52 1 2 3 4

49 1.00 096 0.88 0.58 [0.28 030 037 041
50 1.00 091 0.59 (027 027 036 0.42
51 1.00 0.73 1037 0.33 039 0.43
52 1.00 10.72 0.59 0.50 0.50
1 1.00 094 0.65 0.56
2 1.00  0.71 0.60
3 1.00 0.88
4 1.00

correlations of the generated series and their corre-
sponding historic targets may work as well
Performance of the proposed algorithm is demon-
strated using a numerical example.

NUMERICAL EXAMPLE

The example presented in this article provides 1000
years of synthetic weekly flows at seven sites and
synthetic rainfall intensities on four sites in the
Oldman River basin in the Province of Alberta, wes-
tern Canada. This basin has been subject to many
studies because intense water abstractions and the
requirement to pass 50% of natural flow to the down-
stream province of Saskatchewan cannot be simulta-
neously satisfied in dry years. Consequently, basin
management that includes hedging of demand in
combination with the optimal reservoir operating
rules can benefit from stochastic inflow series that
contain 1000 years of statistically possible inflows.
These include challenging periods with back-to-back
dry years, as well as extreme droughts and wet years
that have not been seen in the historic record. Using
the stochastic series as an alternative input in basin
management models provides more opportunities to
examine how the entire system should respond to a
variety of runoff conditions in the basin. A schematic
model of the basin is shown in Fig. 3, with inflow
locations shown as sites where the stochastic flow
series were generated. The study region involves the
Oldman River in southern Alberta, with two of its
major tributaries, the Waterton River and St Mary
River. There are three storage reservoirs and several
irrigation districts, represented as five composite
water-demand blocks in Fig. 3. Two test runs are
presented, one with seven flow series and the other
with 11 series in total, of which seven are flow series
and four are precipitation series available for the
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Fig. 3 Schematic of the Oldman River basin in southern Alberta.

same period. While there are no visible differences in
the results between the two runs, the results are
presented in a composite form for both test runs.
For example, the annual flow statistics in both runs
are virtually identical in both runs, as seen in Table 2.

It should be noted that the proposed algorithm
did not include any direct fitting of annual statistics;
their fit is only achieved as a by-product of fitting the
weekly statistics. Yet, the annual means are reason-
ably close. Standard deviations in the generated ser-
ies are slightly higher, especially for rainfall series,
due to significantly longer generated series that
include rare events which increase standard

Table 2 Annual statistics of historic and generated data series.

deviations. However, deviations from the historic
values are modest. In addition to these statistics,
Tables 3 and 4 confirm that annual cross-correlation
among the stations and annual auto-correlations are
similar in the generated and historic data. This effec-
tively removes the need to generate the annual series
separately and subsequently apply a decomposition
principle, which has so far been the usual practice.
Again, note that the algorithm does not directly fit
annual cross-correlations between the stations. Those
come as a by-product of a high fit of all historic
weekly correlations. Table 3 shows annual cross-cor-
relations between all 11 data series. It should be

Flow statistics (m> s™)

Precipitation statistics (mm)

Historic data

Max 39.53 48.79 10.71 16.68
Min 14.06 10.60 3.80 5.35
Mean 25.10 27.28 6.63 9.47
SD 5.69 7.45 1.47 2.30
Generated data
Max 57.15 70.45 13.87 22.06
Min 10.99 10.24 3.36 4.57
Mean 25.01 27.08 6.59 9.43
SD 5.97 7.71 1.48 2.33

45.47
11.35

22.09
5.97

53.11
8.11

21.97
6.19

75.83 222.93 962 714 1195 663
14.06 45.10 158 131 401 187
39.66 109.19 497 396 710 355
12.96 35.94 147 101 168 96
106.94 308.20 1177 950 1791 889
12.61 35.72 118 111 199 73
39.23 108.46 486 387 696 347
12.69 35.81 186 136 247 123
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Table 3 Annual cross-correlations of historic and generated data.

Flow stations

Precipitation stations

C5AE27 GSTDAM C5AD32 C5AD41 G5AD26 C5AA24 C5AD07 Cardstone  Lethbr. M.View Taber
Historic data
1 1.000 0.964 0.966 0.957 0.944 0.831 0.881 0.542 0.403 0.482 0.347
2 1.000 0.924 0.958 0.948 0.865 0914 0.582 0.493 0.539 0.372
3 1.000 0.968 0.926 0.822 0.869 0.561 0.409 0.530 0.384
4 1.000 0.948 0.873 0.930 0.616 0.482 0.586 0.436
5 1.000 0.906 0.941 0.571 0.480 0.535 0.391
6 1.000 0.966 0.604 0.522 0.547 0.430
7 1.000 0.598 0.513 0.561 0.431
8 1.000 0.699 0.801 0.778
9 1.000 0.631 0.696
10 1.000 0.644
11 1.000
Generated series
1 1.000 0.957 0.959 0.949 0.937 0.827 0.873 0.536 0.394 0.437 0.369
2 1.000 0.913 0.951 0.940 0.855 0.906 0.559 0.442 0.474 0.390
3 1.000 0.959 0.922 0.820 0.861 0.566 0.410 0.481 0.407
4 1.000 0.944 0.865 0.922 0.581 0.447 0.494 0.427
5 1.000 0.902 0.937 0.568 0.459 0.483 0.417
6 1.000 0.954 0.598 0.497 0.492 0.444
7 1.000 0.582 0471 0.481 0431
8 1.000 0.764 0.787 0.799
9 1.000 0.705 0.805
10 1.000 0.735
11 1.000

noted that the flow series are all mutually correlated
with high correlation coefficients. Somewhat lower
but still significant is the mutual correlation between
the precipitation stations, while the correlations
between mean annual flows and annual precipitations
are the weakest.

Similarly, Table 4 shows the annual auto-corre-
lations for the historic and generated series. Since the

historic annual auto-correlation of precipitation sta-
tions is very close to zero for all inspected lags, it has
not been included in Table 4. Long-term annual
cycles have been subject to much controversy in
hydrology, and especially in stochastic hydrology.
However, as attested by the historic annual auto-
correlations in Table 4, their level of significance
in this basin does not appear to be an important

Table 4 Annual auto-correlations of historic and generated data.

C5AE27 GSTDAM C5AD32 C5AD41 G5AD26 C5AA24 C5AD07
Historic data
Lag-1 0.116 0.203 0.102 0.138 0.145 0.082 0.174
Lag-2 —-0.040 0.049 -0.063 0.029 0.014 0.013 0.084
Lag-3 0.064 0.074 —-0.005 0.013 0.092 0.085 0.073
Lag-4 0.074 0.056 0.116 0.069 0.087 0.051 0.020
Lag-5 0.111 0.089 0.083 0.081 0.133 0.174 0.129
Lag-6 0.039 0.035 0.057 0.036 0.092 0.016 0.039
Lag-7 -0.014 -0.022 -0.006 -0.052 —0.083 -0.097 -0.105
Lag-8 0.035 0.021 0.042 -0.023 0.048 -0.024 -0.037
Generated series
Lag-1 0.104 0.115 0.112 0.128 0.121 0.087 0.103
Lag-2 -0.017 -0.006 -0.020 -0.018 -0.003 —-0.006 0.000
Lag-3 0.007 0.020 0.005 0.012 0.016 0.023 0.028
Lag-4 —-0.001 —-0.002 0.019 0.012 -0.012 -0.021 -0.012
Lag-5 0.011 0.037 0.012 0.019 0.024 0.044 0.029
Lag-6 0.046 0.000 0.049 0.008 0.006 -0.021 -0.019
Lag-7 -0.050 —-0.069 —-0.062 —-0.060 -0.051 -0.027 -0.056
Lag-8 -0.034 -0.011 -0.040 -0.014 -0.017 0.004 0.009
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factor. Still, Table 4 is presented to show that the
algorithm is capable of addressing proper sequences
of years when re-arranging the final sequence of
years in Step 3. In fact, the model offers enough
flexibility to assign a user-defined parameter that
may give higher weight to some stations within the
objective function formulation, if it is found that
convergence for those stations lags behind other sta-
tions in the process of fitting the target annual auto-
correlation statistics.

Presentation of weekly statistics is more challen-
ging, due to the sheer volume of data. The model
achieves a very close match of weekly means and
standard deviations between the historic and gener-
ated series, along with the weekly distribution func-
tions used to generate data in Step 1, based on the
previously explained concepts. Showing the correla-
tion match between the historic target correlation
matrix and the correlation matrix of generated series
is not possible here (the matrix rank is
52 x 11 = 572). However, it is interesting to see the
correlations that cross over from year to year. They
are similar for all flow stations (and close to zero for
precipitation stations), so it is sufficient to present
correlations for one flow station here. Since the his-
toric correlations between the last four weeks of the
previous year and the first four weeks of the subse-
quent year are already given in Table 1, Table 5
shows the same correlations that show statistical
dependence for generated data for the same station
series.

Note that the correlations placed in the window
in Table 5 have been induced by permutation of the
entire years of generated data in Step 3, while the
other correlations shown in Table 5 have been
induced in Step 2.

Comparison of auto-correlation functions
between historic and generated series is a standard
way to test stationary stochastic series. As seen in

Nesa llich

Table 6, the differences shown for a lag of 15 weeks
are usually on the third decimal. Such small differ-
ences would hardly be visible in a graphical form on
a correlogram that is typically used to present com-
parisons of target and generated auto-correlations.

Finally, since there were 1000 years of weekly
data generated for 11 stations, very rare events with
return flow periods of 100, 200 or 500 years found in
1000 hypothetical years should have similar values to
the weekly values that would be derived from statis-
tical distributions that are used to fit extreme hydro-
logical events. To this end, annual weekly maximums
have been extracted from each year of the generated
series and ranked in ascending order, thus allowing
estimates of the flows for specific return flow periods
based on the standard Weibull plotting position for-
mula n/(m + 1), where n is the rank in the sorted
series and m is the maximum number of data in the
series (in this case m = 1000). These flows are then
compared with the output of a standard frequency
analysis model that uses historic annual weekly max-
imums as input and estimates high weekly flows with
the same return flow periods of 100, 200 and 500
years. The results are presented in Table 7.

The percentage of rainy weeks in the generated
series is also similar to the historic series. For three
precipitation stations (Cardstone, Mountain View and
Taber), this duration is between 27% and 29% of the
time, while for the precipitation at Lethbridge this
duration is 20% in the historic series and 22% of the
time in the generated series. The slight increase in the
generated series may be due to counting very small
generated values (less than 0.1 mm) as rainy days,
while the historic measurements would record such
rainfalls with zeros.

Note that high weekly flows with the return
periods of 100, 200 and 500 years are within the
expected range that was obtained by fitting the his-
torical annual maximums with the three statistical

Table 5 Correlations of weekly stochastic series for Station CSAE27.

Generated Week 49 Week 50 Week 51 Week 52 Week 1 Week 2 Week 3 Week 4
Week 49 1.00 0.92 0.82 0.51 0.30 0.30 0.33 0.39
Week 50 1.00 0.86 0.52 0.31 0.31 0.34 0.40
Week 51 1.00 0.67 0.42 0.39 0.40 0.44
Week 52 1.00 0.69 0.60 0.47 0.48
Week 1 1.00 0.81 0.52 0.49
Week 2 1.00 0.56 0.52
Week 3 1.00 0.83
Week 4 1.00
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Table 6 Comparison of historic (H) and generated (G) weekly auto-correlations.

Lag CSAE27 GSTDAM C5AD32 C5AD41 G5AD26 C5AA24 C5AD07

H G H G H G H G H G H G H G
1 0.908 0.893 089 0.879 0.874 0.865 0.886 0.866 0.886 0.868 0.827 0.818 0.876  0.860
2 0.800 0.784 0.787 0.769 0.773 0.764 0.768 0.763  0.768 0.752  0.696  0.695 0.751 0.736
3 0.691 0.682 0.683 0.671 0.676 0.674 0.656 0.673 0.656 0.648 0.594 0.593 0.645 0.637
4 0.576  0.571 0577 0572  0.567 0.570 0.531 0575 0531 0.529 0481 0490 0.534 0.534
5 0456 0458 0465 0467 0457 0466 0403 0470 0403 0408 0.358 0374 0418 0427
6 0.333  0.340 0352 0.361 0340 0.352 0281 0.360 0.281 0.290 0.250 0.267 0.311  0.323
7 0218 0.229 0.242 0253 0.230 0245 0.168 0256 0.168 0.180 0.154 0.170 0.208 0.221
8 0.118 0.130 0.149 0.161 0.133 0.148 0.078 0.162 0.078 0.091 0.074 0.086 0.124  0.135
9 0.033 0.044 0.065 0.078 0.049 0.061 0.000 0.077 0.000 0.012 0.009 0.018 0.052 0.061
10 -0.037 -0.027 -0.003 0.008 -0.022 -0.011 -0.061 0.006 -0.061 -0.051 -0.043 -0.038 -0.008 —0.001
11 -0.094 -0.084 -0.058 -0.049 -0.079 -0.071 -0.108 -0.054 -0.108 -0.099 -0.083 -0.081 -0.055 -0.051
12 -0.139 -0.130 -0.104 -0.096 -0.126 -0.120 -0.143 -0.103 -0.143 -0.136 -0.112 -0.113 -0.092 -0.090
13 -0.174 -0.166 -0.143 -0.135 -0.163 -0.159 -0.170 -0.144 -0.170 -0.164 -0.135 -0.138 -0.123 -0.122
14 -0.199 -0.193 -0.172 -0.164 -0.191 -0.188 -0.188 —-0.175 -0.188 -0.183 -0.153 -0.156 -0.147 -0.147
15 -0.219 -0.213 -0.195 -0.188 -0.213 -0.210 -0.200 -0.199 -0.200 -0.196 -0.165 -0.169 -0.165 -0.165
Table 7 Comparison of extreme values with frequency analysis model outputs.
Return ~ Weekly flow series Precipitation series
period
(years) C5AE27 GSTDAM C5AD32 C5AD41 G5AD26 C5AA24 C5AD07 Cardstone  Leth. M.View Taber
Generated series: based on the Weibull plotting position probability
100 280.1 337.5 69.0 111.6 286.0 645.9 1598.9 159 123 204 123
200 321.2 366.2 78.1 130.1 342.4 739.7 17334 179 131 213 133
500 337.8 428.4 83.2 146.3 379.1 896.6 2301.0 188 150 252 172
Historic series: 3-parameter log-normal distribution, MLM fit
100 263.0 3274 71.4 110.5 289.6 722.1 1708.0 149 129 204 129
200 287.8 365.3 78.8 123.4 318.9 822.3 1942.1 161 141 227 145
500 321.0 417.4 88.8 141.2 358.3 962.3 2269.5 176 156 258 166
Historic series: extreme value distribution, MLM fit
100 274.0 334.8 73.1 118.9 293.5 793.5 1781.0 149 128 206 134
200 304.0 378.0 81.4 137.0 324.8 940.8 2071.2 159 138 231 152
500 345.2 438.8 92.9 164.0 366.9 1166.1 2500.8 172 152 264 179
Historic series: log-Pearson Il distribution, MLM fit
100 268.0 335.0 75.0 120.4 288.0 739.3 1731.7 146 126 202 131
200 294.8 376.7 83.9 138.4 3159 845.5 1980.6 156 136 224 147
500 331.2 435.0 96.4 165.0 353.0 994.7 2333.9 167 149 255 171

distributions commonly used to model rare events
(three-parameter log-normal, extreme value and log-
Pearson III distributions). All distributions were fitted
using the maximum likelihood method (MLM). A
commercial frequency analysis model was obtained
from Golder Associates Ltd of Calgary to obtain
statistical estimates of these flows.

CONCLUSIONS AND RECOMMENDATIONS

This article presents a general approach to modelling
stochastic hydrological and meteorological time ser-
ies that relies on recent scientific advances in

statistics. The relevant statistical dependences found
in the historic series that have been preserved in the
generated series include statistical distributions of
weekly flows, both annual and weekly auto-correla-
tions, as well as cross-correlations with all significant
lags. The method does not require extensive calibra-
tion. The current research is focused on testing the
model using daily time steps.
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