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Abstract

Simulation has gained acceptance in the operations research community as a viable method for analyzing complex problems. While
random generation of variables with various marginal distributions has been studied at length, developing ability to preserve a given
degree of statistical dependence among them has been lagging behind. This paper includes a short summary of the previous work
and a description of the proposed algorithm for efficient re-arranging of generated random variables such that a desired product moment
correlation matrix is induced. The proposed approach is different from similar algorithms that induce a desired rank-order correlation
among random variables. The algorithm is demonstrated using three numerical examples, one of which also includes a comparison with
@RISK commercial package. Its main features are simplicity, ease of implementation and the ability to handle either theoretical or
empirical distribution functions.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The need to generate statistically dependent random
variables arises in various fields where simulation has pro-
ven to be a useful tool, such as finance, production, natural
resources management or scheduling. This paper offers a
new approach for generating stochastic variables with
desired correlation structure and arbitrary marginal distri-
butions aimed at preserving the product moment
correlations.

The basic premise for generating dependencies among
random variables is to formulate the process of generation
of new dependent variables as linear combinations of inde-
pendent random variables. The notion of ‘‘independent
random variables’’ here denotes de facto random variables
that were already generated in previous steps of the gener-
ation process. This approach is known to work well with
normal distribution. However, Iman and Conover (1982)
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identified a difficulty associated with the case of stratified
samples where the intent is to preserve the desired bounds
on the generated variables. The bounds may be violated
since the normalized random component in a regressive
process must be unbounded to preserve the desired correla-
tion structure and normal distribution. For example, in
some regressive processes variables that are not allowed
to be negative may actually become negative after addition
of normalized random terms. Also, many processes cannot
be adequately represented with a normal distribution, while
the use of linear combinations in the generating scheme is
only guaranteed to preserve normal distribution. Hence,
much of the previous research was based on an attempt
to find a universal transformation function from a normal
distribution to an arbitrary distribution such that both the
distribution properties and desired correlations are pre-
served. The anticipation was that such a transformation
would allow a mathematical transition from a set of corre-
lated variables with normal distribution to a set of corre-
lated variables with arbitrary distribution. The following
section contains a survey of published work in this regard.
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Early efforts by Mardia (1970) were restricted to finding
transformations of bivariate random variables with normal
distribution into other distributions. Johnson and Ram-
berg (1977) also considered marginal distributions as func-
tional transformations of normal distributions. They first
transformed the original normally distributed vector to a
correlated multivariate normal vector, and then converted
it from normal into desired marginal distributions. The
problem was that the statistics of the transformed vector
(i.e. means, variances and correlation) could not be easily
controlled and often deviated from the desired targets. A
mathematical treatment for some types of distributions
(e.g. lognormal) was developed, however this approach
lacked generality since it was not applicable to all marginal
distributions. It has been recognized that correlated multi-
variate random vectors and marginal distributions from
the same family of distributions have been covered in the
literature (Devorye, 1986; Johnson, 1987). However, corre-
lated random variables with distributions that do not orig-
inate from the same family have been given much less
attention.

The work of Iman and Conover (1982) provided an
algorithm which is used today by two commercial simula-
tion software vendors that provide general purpose simula-
tion models, although with a disclaimer that they are only
capable of matching the rank correlations between the gen-
erated random variables. A valuable aspect of this
approach is that the marginal distributions of the original
random vectors remain intact, the algorithm merely pro-
vides for a key to re-ordering of the elements of the original
vectors. In that sense, this was the first truly ‘‘distribution
free’’ algorithm since it guaranteed that the original mar-
ginal distributions would not change. In this approach
the target correlation matrix contains rank correlations,
not the Person correlations. Although rank correlation is
most frequently used as a measure of statistical depen-
dence, in certain simulation studies a desired goal is to
matching the product moment correlations. In such cases
the use of the available commercial packages can only be
made under the assumption that matching rank correla-
tions was a sufficiently close approximation to matching
the Pearson product moment correlations. This assumption
may lead to errors of unacceptable magnitude.

Cario and Nelson (1996, 1997) designed the NORTA
(‘‘Normal to Anything’’) method, which has generated sig-
nificant interest in the research community, although to
this date it has found no application in a general commer-
cial simulation software, but is rather restricted to specific
applications related to finance. This algorithm begins with
generation of a random vector with multivariate normal
distribution, which is then transformed to a random vector
with desired marginal distributions and correlation matrix.
The authors developed a numerical procedure which deter-
mines the correlation structure of the initial normal vector
such that the correlation structure of the resulting trans-
formed vector with desired marginal distributions is main-
tained. However, as documented by Li and Hammond
(1975) as well as Lurie and Goldberg (1998), some attempts
to generate random vectors with arbitrary marginal distri-
butions and with arbitrary feasible correlation have failed.
Ghosh and Henderson suggested an adjustment to the
method, and a different adjustment was also suggested by
Clemen and Reilly (1999). The recent variants of this
approach are the QUARTA method (‘‘Quasi-Random to
Anything’’) from Henderson et al., 2000) and VARTA
(‘‘Vector Auto-Regressive to Anything’’) from Biller and
Nelson (2003) which relies on the approximation of input
vector with Johnson type distributions. The common fea-
ture to all variants is an iterative numerical procedure for
matching the correlation structure of the initial random
vector until the desired correlation structure of the result-
ing marginal vector is achieved. To help prevent the itera-
tive procedure from failing, Ghosh and Henderson (2002)
resorted to the use of semidefinite programming (SDP).
Much of their recent efforts were related to developing a
procedure that would determine if the target correlation
matrix was feasible for a set of given random variables with
arbitrary distribution functions. They introduced the
notion of ‘NORTA defective correlation matrices’ if they
are feasible and yet cannot be matched using the NORTA
method, and conducted numerical experiments in which
the failures of the NORTA method were related to increase
in dimensionality of the generated random vector (Ghosh
and Henderson, 2003). They noted that the probability of
failure of the NORTA method is over 80% for random vec-
tors with dimensions that are above 10. Additionally, the
recent use of SDP that they proposed has significantly slo-
wed down the execution, reporting for example 10 min run
times for simulating correlated random vectors of dimen-
sion 10 (Ghosh and Henderson, 2003).

In their work, Ghosh and Henderson (2003) repeatedly
state that ‘‘for two-dimensional random vectors, the NOR-
TA method can match any feasible correlation matrix. This
follows immediately from the characterizations in Whitt
(1975).’’ The idea in this paper is based on extending this
concepts for vectors which are multi-dimensional, using a
systematic approach of re-arranging the elements of vec-
tors Xk, k = 2, . . . ,n based on the use of multiple regres-
sion fit as a measure of statistical dependence. Hence, the
focus of this paper is a method of re-arranging the elements
of each generated random variable in order to induce a
desired statistical dependence. In addition to execution
speed and the ease of implementation, additional advanta-
ges of the proposed method are

(a) The method preserves the Pearson correlations
instead of the rank correlations. This may sometimes
be preferable to preserving the rank correlation.

(b) The method can be used to induce desired statistical
dependence among random variables which are
derived from empirical distributions. Recent
advances in kernel distribution functions (Silverman,
1986; Scott, 1992) have gained momentum among
researchers since they offer more flexibility for statis-
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tical representation of the processes that are difficult
to model using the existing theoretical distributions.

The rest of the paper is divided as follows: Section 2 pro-
vides some practical aspects related to problem formula-
tion; Section 3 gives theoretical considerations for the
basis of the algorithm, Section 4 explains the algorithm,
Section 5 provides results of numerical experiments and
Section 6 provides conclusions, followed by acknowledge-
ment and references.

2. Problem formulation

The problem under consideration deals with random
generation of vectors which have different probability dis-
tributions and which exhibit mutual statistical dependence.
It is assumed that random vectors represent processes for
which either observed data or underlying theoretical
knowledge is available, such that probability distribution
functions and parameters of statistical dependence can be
estimated.

In general, the above problem can be approached in two
ways. One way is to try to estimate the joint probability
densities for two or more variables, and the other is to first
independently generate the random variables as univariate
processes, and then impose the desired correlation struc-
ture by re-ordering sequence of their elements. The latter
approach ensures that the properties of the initial marginal
distributions remain unaffected, and it is also easier to
implement due to the multitude of available univariate dis-
tributions and fitting techniques which are well known and
are therefore not discussed further in this paper. The for-
mer approach requires estimation of the parameters and
functional form of the multivariate frequency distribution
function based on the observed data – a much more diffi-
cult task given the uncertainties associated with the func-
tional form, and with typically insufficient length of the
available data for fitting multivariate distribution
functions.

It is common to define dependence between a series of
random vectors using a correlation matrix. When used to
model real-world processes for which data are available,
this matrix is constructed by calculating the correlation
coefficient for each par of random variables under consid-
eration. Another way to represent dependence between
observed data is to estimate the matrix of regression coef-
ficients and the regression error term. Usually, both the
correlation coefficient matrix and regression coefficient
matrix are estimated based on the observed data. This is
emphasized since the approach presented in this paper uses
the matrix of regression coefficients to represent statistical
dependence. Determination of regression coefficients from
observed data follows known methodology already cov-
ered in standard statistical textbooks (Devore, 1991). It is
also possible to estimate a matrix of regression coefficients
based on a given Pearson correlation matrix along with the
means and standard deviations of correlated variables
(Cooley and Lohnes, 1971), and a computer programs that
can provide this transformation are available (Cooley and
Lohnes, 1971; UNESCO, 2004). Therefore, in this paper
we shall assume that the desired statistical dependence
can be represented either as a target matrix of product
moment correlations or as the lower triangular matrix of
regression coefficients.
3. Theoretical basis

Correlation between two independent random variables
is zero. Assuming that vectors x and y of dimension n are
generated independently, it may be possible to induce a
desired correlation by systematic re-ordering of the ele-
ments of random vector y. Inducing a desired correlation
can be viewed as a combinatorial problem, for which suit-
able tools can range from mathematical programming to
heuristics. In general, there is no unique solution for the
sequence of elements of vector y provided that the target
correlations are less than the maximum. The goal is to find
a suitable solution with a minimum computational effort. It
is important to note that for two independent random vari-
ables x and y the highest possible correlation that can be
obtained by re-arranging their elements to correspond to
the pairs of elements of x and y obtained from the sorted
sequence of both vectors. Whitt (1976) provided a proof
that the sorted sequence of vectors x and y provides the
matching of their elements with maximum correlation.
The correlation coefficient qx,y is a measure of statistical
dependence between vectors x and y:

qxy ¼
Xn

i¼1

ðxi � �xÞðyi � �yÞ
nrxry

ð1Þ

where �x and �y are mean values while rx and ry are standard
deviations of sample vectors x and y. It is obvious from Eq.
(1) that the value of qx,y would change if any two elements
yi and yk were to swap their positions (i, k = 1,. . ., n). One
could therefore envisage an algorithm that consists of a set
of systematic trials aimed to swap the positions of the ele-
ments of vector yi, such that only trials resulting in a de-
sired change in the value of qx,y are accepted, while the
others are discarded. In this fashion the algorithm would
be similar to a bubble sort procedure which is known as
the simplest sorting algorithm. The maximum correlation
that could be enforced in this way would correspond to
the correlation obtained after both vectors x and y are
sorted in the same sequence. However, the desired target
correlation is typically less than maximum, hence the algo-
rithm terminates when the correlation between vector x

and y has reached its target. Note that such an algorithm
would not require a complete recalculation of all terms
on the right hand side of Eq. (1), but instead only the net
change in the value of qx,y caused by swapping of its two
elements.

Although the above suggestion would work well for two
vectors, re-arranging an arbitrary vector such that its
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correlation coefficients with n other vectors are induced is a
more difficult proposition. Eq. (1) would have to be written
n times and any permutation of elements that improves
some of the correlations may worsen the others. To avoid
this, the proposed algorithm exploits the known relation-
ships between coefficient of determination associated with
multiple regression and correlation.

Consider a simple linear regression model of the form:

yi ¼ a0xi þ a1 þ N ½0; ey � ð2Þ

where xi is an independent variable, a0 and a1 are parame-
ters of estimation, ey is the standard error of estimate and
N[0, ey] is a normally distributed random term with zero
mean and standard deviation of ey. Assume that a0, a1

and ey can be estimated based on observed data, much
qx,y. A principal difference between correlation and regres-
sion is that in regression one must distinguish between
independent variable xi and statistically dependent variable
yi, and that regression coefficients change if the indepen-
dent–dependent formulation is reversed (i.e. yi is consid-
ered independent and xi is dependent). On the other
hand, a correlation coefficient shows statistical dependence
between the two variables without considering indepen-
dent–dependent nature that may exist between them.
Therefore, if we are to use regression as an aid to enforce
a given correlation between vectors x and y by permutation
of elements of one of the vectors, the choice of a statistical
dependence for either vector x or y is arbitrary.

The standard error of estimate in Eq. (2) for a sample of
n elements is defined as:

ey ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðyi � y0iÞ

2

n� 2

s
ð3Þ

where y0i represents the target values which would fit the
regression line a0xi + a1. It is known from elementary sta-
tistics (Devore, 1991) that the square of the correlation
coefficient qx,y gives the value of the coefficient of determi-
nation r2 of linear regression between variables x and y.
The coefficient of determination is defined as:

r2 ¼ 1�
Pn

i¼1ðyi � y0iÞ
2Pn

i¼1ðyi � �yÞ2
ð4Þ

For a given vector y only the error sum of squares yi � y 0i
� �2

represented as the numerator portion of the right hand side
term in Eq. (4) can be modified by manipulating the order
of elements yi. The value of the denominator remains un-
changed regardless of the ordering sequence of elements
yi. Note that the error sum of squares is also featured in
the sample standard error of estimate ey in Eq. (3) for vec-
tors x and y. As the term ey approaches zero, the coefficient
of determination r2 approaches its maximum value of 1,
and correlation coefficient qx,y approaches its maximum
or minimum values of 1 or �1 (minimum value in case of
negative statistical dependence between variables x and
y). Hence, an important observation for the purpose of
building algorithms is that changing ey by re-ordering of
yi also changes the correlation coefficient between vectors
x and y. An increase of ey causes reduction of the correla-
tion between x and y, and vice versa – a reduction of ey

causes in an increase of the correlation between x and y.
The above considerations are also valid for multiple corre-
lation and regression, where multiple r2 can serve as a com-
posite measure of the fitness when one dependent variable
is regressed against several independent variables.

With the above considerations, it is possible to formu-
late an efficient algorithm for inducing desired correlation
between vectors x and y by permutation of the elements
yi. The simplicity of the proposed algorithm is that it is
based in part on the above notions from elementary statis-
tic. No additional theoretical considerations are required.

4. Algorithm

In this paper the use of terms such as vectors x, y, z is
synonymous with random variables x, y, z. As previously
mentioned, the details regarding the generation of random
variables with chosen statistical distribution functions are
not dealt with here. Rather, the focus is on the procedure
for re-ordering of the elements of randomly generated
vectors such that their product moment correlation matrix
closely matches a desired set of target correlations. The
proposed method requires the lower triangular regression
matrix containing the target regression coefficients, the
standard errors of estimate and coefficients of determina-
tion. These can be estimated in the same way a target cor-
relation matrix is estimated, typically by using the observed
data sample or by utilizing knowledge of the process which
is being modeled. A target correlation matrix is also
required for verification of the algorithm.

The algorithm proceeds through the steps described
below on the simplest example of re-arranging of elements
yi with respect to vector x until a desired correlation is
induced. Once this is accomplished, the algorithm retains
the new arrangement of the elements of vector y and pro-
ceeds with re-arranging elements of vector z with respect
to the unchanged initial vector x and re-arranged vector
y. The procedure is thus repeated for other random vari-
ables for which a specified correlation structure is desired.
Hence, the conceptual procedure explained for permuta-
tions of elements of vector y with respect to vector x is sub-
sequently repeated for all other vectors without
modifications.

The permutation procedure of elements yi proceeds in a
few distinct steps:

Step 1. Using the available regression parameters a0, a1

and ey generate a random set of n elements of y00i
such that

y00i ¼ a0xi þ a1 þ N ½0; ey � ð5Þ

The idea is to use vector y00 as a temporary aid in
re-arranging the elements of vector y, since vector
y00 has a desired correlation structure to vector x.
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The n realizations of the random term N[0, ey] in
Eq. (5) are saved as elements of vector s for future
re-use, and the n realizations of the sum of target
values a0 xi + a1 are also saved as elements y 0i.
The purpose of this will become apparent in subse-
quent steps.

Step 2. Sort out both vector y00 and the original vector y

which has the desired marginal distribution. The
sorted order of elements of both vectors will result
in the highest possible correlation between the two
vectors.

Step 3. Replace the elements y00i by their counterpart ele-
ments yi obtained from the sorted order of both
vectors. This has effectively created a copy of vec-
tor yi with a changed order of its elements which
brought vector y closer to matching the desired sta-
tistical dependence with vector x.

Step 4. Re-calculate the coefficient of determination r 02

that corresponds to the new order of elements yi

using Eq. (4).
Step 5. Compare the coefficient of determination r 02

obtained in step 4 with the target coefficient of
determination r2. If they are sufficiently close
(e.g. if jr2 � r 02j < 0.005), stop. If not, go to step 6.

Step 6. Calculate the standard error of estimate e0y that
corresponds to the new order of elements yi

obtained in step 3 using Eq. (3) and estimate d such
that:

d ¼
e0y
ey

ð6Þ

Step 7. Adjust the elements of vector s such that s 0 = sd
and re-generate estimates of y00i by using:

y00i ¼ a0xi þ a1 þ s0 ð7Þ

Proceed to steps 2 through 7 until a convergence is

achieved or until no further improvement is possible, mea-
sured by e0y approaching values close to zero. The process
normally converges after one or two iterations. To ensure
faster convergence on difficult problems, the algorithm
can be improved by using an improved first guess and a
sophisticated iteration algorithm explained below. Depend-
ing on the desired accuracy, the algorithm can be set to exit
after a sufficient number of iterations which would lead to
either the desired statistical dependence or to the maximum
possible dependence measured by the elements of e con-
verging to zero. It should also be noted that the setting
of the threshold jr2 � r 02j allows more or less accuracy of
the final arrangement of all elements. With a smaller value
of jr2 � r 02j the match with the target correlation matrix is
closer, but this may require a few extra iterations. The user
can set the desired accuracy of the algorithm by selecting a
value for jr2 � r 02j. This feature is not available in the algo-
rithm of Iman and Conover (1982).

In the above formulation, vectors x and y represent ran-
dom variables generated using their marginal distributions.
Once the elements of vector y have been arranged to give
the desired statistical dependence, the process can be
repeated for additional variables in a sequential manner
one variable at a time, e.g. for variable z correlated to x

and y the corresponding multiple regression equation is:

z00i ¼ a0xi þ a1yi þ a2 þ N ½0; ez� ð8Þ
In addition to the use of Eq. (8), the model also uses the

multiple coefficient of determination, which ensures that re-
ordering of elements zi conforms simultaneously to correla-
tions between vectors z and x as well as between z and y.
All other steps of the above procedure remain intact.

One of the possible difficulties with the application of
the proposed algorithm is associated with the dimension
n of the random vectors. If the desired value for n is too
small, this may provide insufficient pool of possible values
to guarantee that the desired correlation structure can be
induced. However, this is easy to resolve by generating a
sufficiently large sample, re-ordering the elements of all
vectors as explained above, and then adopting as a desired
output only the first n elements of each vector.

It should also be noted that the proposed method is
transparent to inducing linear or non-linear regressive rela-
tionship between random variables, since r 02 is evaluated in
the same way for either linear or non-linear regression.
Although no attempt was made to test the algorithm with
a target non-linear regression in this research, other
researchers may wish to further explore this possibility.

Additional improvements related to the convergence of
the algorithm can be achieved using the following two
options:

(a) Improved first guess. It was found that for some
problems the following formulation for d is often clo-
ser to the converged value of d thus reducing the
number of required iterations:

d ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jey � e0y j

ey

s
ð9Þ

where the choice between + or � depends on the sign
of ey � e0y .

(b) Faster Iterative Scheme. In addition to an improved
first guess for d, other guesses can also be improved
by using a linear interpolation of the two previous
guesses. Denote with an gk a guessed value of d at
iteration k and with a ck its calculated value obtained
as:

ck ¼ gk þ
r02 � r2

r2
ð10Þ

Hence, when the relative error between the targeted
and calculated coefficient of determination r2

becomes negligibly small (i.e j r2–r 02j � 0, then ck–gk

and the convergence is achieved. The evaluation of
guessed and calculated parameters proceeds as
follows:



gg1g2=c1 g3

c

c1

c2

c = g 

{g1 , c1}

{g2 , c2}

Axis denotation: 
g — guessed value 
c — calculated value

Fig. 1. Graphical interpretation of convergence mechanism.

Table 1
Definition of distribution functions

Variable Distribution and
parameters

Description of parameters

Var 1 Weibull (2.65, 10.33) Shape, scale
Var 2 Extreme Value (7.65,

2.76)
Location, shape

Var 3 Log Normal (13.26,
4.53)

Mean, standard deviation

Var 4 Binomial (19, 0.46) No. of draws, probability of success of
each draw

Var 5 Gamma (4.48, 1.24) Shape, scale
Var 6 Poisson (8.26) Lambda for Poisson distribution
Var 7 Pearson V (7.45,

60.15)
Shape, scale

Var 8 Chi Square (10) No. of degrees of freedom
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Iteration 1: Set g1 using Eq. (9);
Iteration 2: Set g2 using Eq. (10) and set c1 = g1;
Iteration 3: Update the term r 02, set c2 using Eq. (10)
and set the subsequent guess g3 using the following
equation:

g3 ¼
c1g2 � c2g1

g2 � g1 � c2 þ c1

ð11Þ

The above expression for g3 represents the g3 coordi-
nate of an intersection between two lines in the {g, c}
coordinate system, where g is the x-axis and c is the y-
axis. One of the two lines is defined by a pair of
points [g1,c1] and [g2,c2] and the other by c = g, as
shown in Fig. 1. All subsequent guesses are made
using Eq. (11) with updated values of g1, g2 and c1

as shown below:

g1 ¼ g2 ð12Þ
g2 ¼ g3 ð13Þ
c1 ¼ c2 ð14Þ

The effectiveness of the above convergence scheme is
demonstrated on the first numerical example in Section 5.

5. Numerical examples

Three test problems are presented. The first is aimed to
demonstrate the proposed convergence scheme presented
in Section 4. The second test compares the accuracy of
the proposed algorithm with the algorithm of Iman and
Conover that is currently used in commercial simula-
tion packages, while the third is aimed to demonstrate
Table 2
Regression coefficients and standard errors of estimate

a0 a1 a2 a3 a4

1.190249 0.876881 0.000000 0.000000 0.0
3.767440 �0.464989 1.491430 0.000000 0.0
3.229037 0.202747 �0.384836 0.549876 0.0

15.911602 �0.008384 �0.085425 0.195606 �1.3
4.632482 �0.078959 0.005707 0.065370 0.6
�8.486017 0.063402 �0.214972 0.232695 �0.1
�5.560172 �0.031397 �0.016832 �0.120967 0.4
conversion of correlation matrix into a matrix of regression
coefficients.

Test Problem 1
To demonstrate the universal nature of the algorithm, a

test problem with eight variables was selected with a mix of
positive and negative correlations, as well as a mix of ran-
dom vectors with various marginal distributions that
included both floating point and integer variables. The fol-
lowing input data statistics were compiled to define the test
problem:

(a) Table 1 contains the selected statistical distribution
and its parameters for each variable;

(b) Table 2 contains the lower triangular matrix of
regression coefficients and error terms; and,

(c) Table 3 contains the correlation matrix.

The objective of this test problem is to demonstrate the
ability of the algorithm to generate eight-dimensional ran-
dom vector with marginal distributions given in Table 1
and with the statistical dependence structure given in Table
3. Table 2 is required for the working of the algorithm, but
as stated earlier, Table 2 could have been obtained either
by using Table 3 as input or on the basis of solving the nor-
mal equations for the same observed empirical datasets
from which the correlation in Table 3 was generated in
case the simulation process is based on empirical
observations.

The goal of this test run was to provide re-ordering of
elements of randomly generated vectors. For each vector
a5 a6 a7 ey

00000 0.000000 0.000000 0.000000 1.600622
00000 0.000000 0.000000 0.000000 2.442897
00000 0.000000 0.000000 0.000000 1.015482
83125 0.000000 0.000000 0.000000 1.098559
67744 �0.431165 0.000000 0.000000 0.865812
56481 0.538247 1.752190 0.000000 1.402440
31866 0.205193 0.892046 0.563336 1.330376



Table 3
Target correlation matrix

Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 Var 8

Var 1 1.000 0.901 0.684 0.567 �0.521 0.487 0.418 0.393
Var 2 1.000 0.838 0.648 �0.570 0.577 0.519 0.483
Var 3 1.000 0.866 �0.738 0.800 0.770 0.734
Var 4 1.000 �0.910 0.938 0.857 0.877
Var 5 1.000 �0.919 �0.788 �0.822
Var 6 1.000 0.926 0.940
Var 7 1.000 0.942
Var 8 1.000
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1000 elements were generated according to the marginal
distributions in Table 1 using the @RISK package from
Palisade Corporation. These were read as input into the
model. Although the required dimension for the test prob-
lem was only 100, the model re-ordered 1000 elements of
each vector, and this output was then split into 10 separate
subsets. This provided 10 possible solutions sets, which
could be compared and analyzed. A correlation matrix
was constructed for each of the 10 outputs, and the average
values of each correlation coefficient are given in Table 4,
while Table 5 shows standard deviations of each correla-
tion coefficient based on the 10 correlation matrices gener-
ated for each of the 10 outputs. It is obvious that the
proposed algorithm can re-order the input vectors such
that their resulting correlation matrix closely resembles
the target. The threshold jr2–r 02j was set to 0.005 for this
problem.

Since the algorithm employs an iterative scheme, it is
prudent to check its convergence. Table 6 provides a sum-
mary of all iteration steps, with the interim values of r2, r 02
Table 4
Average resulting correlation matrix

Var 1 Var 2 Var 3 Var 4

Var 1 1.000 0.902 0.671 0.547
Var 2 1.000 0.833 0.631
Var 3 1.000 0.861
Var 4 1.000
Var 5
Var 6
Var 7
Var 8

Table 5
Standard deviation of correlation coefficients

Var 1 Var 2 Var 3 Va

Var 1 0.000 0.017 0.056 0.0
Var 2 0.000 0.036 0.0
Var 3 0.000 0.0
Var 4 0.0
Var 5
Var 6
Var 7
Var 8
and d. It can be seen that the initial guess already provided
convergence for variables 3, 7 and 8, while variable 5
required only one additional trial to converge. Successful
re-ordering of variables 2, 4 and 6 required up to 5 addi-
tional iterations to converge. Convergence is achieved
when r2 and r 02 become sufficiently close, i.e. when the
absolute value of their difference becomes less than 0.005.

Test Problem 2
This problem involves re-arrangement of 52 random

variables, each with 1000 elements. Each variable is gener-
ated using log normal distribution with the mean and stan-
dard deviation obtained from empirical data samples
available for all 52 variables. Also obtained from the data
sample are the Spearman rank correlation (to be used as
input into @RISK model), Pearson product moment corre-
lation matrix, and a lower triangular regression matrix
obtained by solving the normal equations which were setup
based on the available data sample (Devore, 1991). The
target rank and Person correlation matrices, along with
the historic data sample and the simulated random vectors
Var 5 Var 6 Var 7 Var 8

�0.477 0.488 0.460 0.418
�0.525 0.586 0.588 0.526
�0.725 0.829 0.834 0.790
�0.916 0.958 0.860 0.910

1.000 �0.903 �0.734 �0.823
1.000 0.925 0.959

1.000 0.938
1.000

r 4 Var 5 Var 6 Var 7 Var 8

61 0.074 0.078 0.086 0.090
56 0.061 0.072 0.090 0.090
26 0.033 0.032 0.044 0.049
00 0.010 0.009 0.028 0.017

0.000 0.012 0.045 0.027
0.000 0.021 0.008

0.000 0.010
0.000



Table 6
Values of r2 r 02 and d in each iteration

Variable Iteration r2 r02 D

2 1 0.9011 0.8701 1.1051
2 0.8762 1.0775
3 0.8811 1.0432
4 0.8871 0.9631
5 0.9000 0.9568

3 1 0.8541 0.8565 0.9190
4 1 0.8895 0.9135 0.6421

2 0.9075 0.6623
3 0.9044 0.6881
4 0.9026 0.8803
5 0.8759 0.7823
6 0.8876 0.7663

5 1 0.9175 0.9229 0.7702
2 0.9223 0.7753

6 1 0.9538 0.9643 0.4925
2 0.9639 0.5031
3 0.9637 0.5231
4 0.9630 0.7719
5 0.9470 0.6667
6 0.9541 0.6719

7 1 0.9431 0.9438 0.5108
8 1 0.9630 0.9617 0.7853

Table 7
Comparison of absolute errors

Probability Proposed
algorithm

Algorithm of Iman &
Conover

0.001 �0.152 �0.350
0.005 �0.133 �0.312
0.010 �0.123 �0.278
0.020 �0.110 �0.227
0.025 �0.107 �0.210
0.030 �0.103 �0.193
0.050 �0.096 �0.170
0.100 �0.077 �0.136
0.150 �0.064 �0.107
0.200 �0.054 �0.089
0.250 �0.046 �0.074
0.300 �0.039 �0.059
0.350 �0.032 �0.043
0.400 �0.025 �0.031
0.450 �0.018 �0.017
0.500 �0.010 �0.006
0.550 �0.002 0.009
0.600 0.008 0.022
0.650 0.018 0.038
0.700 0.030 0.057
0.750 0.041 0.080
0.800 0.053 0.109
0.850 0.069 0.141
0.900 0.091 0.176
0.950 0.133 0.218
0.960 0.146 0.230
0.970 0.158 0.250
0.980 0.170 0.276
0.990 0.190 0.317
0.999 0.238 0.457
Mean 0.001 0.008
Standard

Deviation
0.069 0.122
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obtained from @RISK and from the proposed algorithm
can be obtained upon request.

The first step is to generate 1000 elements of each ran-
dom variable according to the given parameters of lognor-
mal distribution. This was done using one of the standard
methods available in the literature (Law and Kelton, 2000),
but it could have also been done as an independent step by
running @RISK on some other input generation model
without including any statistical dependence among the
variables. Hence, the results of this step are not in question,
as the author merely relied on the proven methods devel-
oped by other researchers. Also, the available simulation
outputs posted on the web allow for easy verification of
the generated marginal distributions.

The same lognormal parameters were used for genera-
tion of all 52 variables using the @RISK spreadsheet
add-on, along with a Spearman rank correlation matrix
as input obtained from the raw data. A comparison with
the @RISK package regarding the execution speed was
not carried out, since @RISK needs to use the rank-order
correlation matrix that first needs to be generated. It then
runs within a spreadsheet, which adds additional disadvan-
tage to its execution speed. To make the comparison
between the two algorithms more transparent, the conver-
gence criteria for each variable were loosely set to
jr2 � r 02j < 0.1 since @RISK has no similar mechanism
for fine tuning the re-ordering process. With the exception
of only one variable that needed a single iteration to con-
verge, the first guess of d for all other variables provided
a solution that already satisfies this condition. The pro-
posed algorithm takes less than 7 seconds of CPU time
on a 3.2 GHz PC to re-arrange all 52 random variables
such that the desired correlation matrix is induced.
Once the output was generated by both algorithms, it
was possible to compare the Pearson product moment cor-
relation matrix created on the basis of both algorithms with
the target Pearson correlation matrix obtained from the
raw data. A deviation from the target values constitutes
an absolute error. Table 7 provides statistical summary of
the absolute errors obtained from both algorithms, includ-
ing the resulting cumulative probability, mean and stan-
dard deviation. The mean absolute errors of both
algorithms are close to zero, which was to be expected.
However, the standard deviation of absolute error
obtained from the algorithm of Iman and Conover is
roughly two times higher than that obtained by the pro-
posed algorithm. About 20% of all absolute errors in the
algorithm of Iman and Conover are greater than 0.15 –
which means, for example, that if the target Pearson corre-
lation is 0.7 the algorithm of Iman and Conover will
achieve either below 0.55 or above 0.85 for one in five cor-
relations on average. This level of accuracy may not be
acceptable in all applications, especially where generation
of random variables with desired statistical dependence is
only one step in a larger simulation process with other ran-
dom components.
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The impact of significant increase of dimensions of the
generated random vector with a desired correlation struc-
ture is one area of study that will have to be addressed in
the future. At this point, it can be said that Test Problem
2 performs well with 52 dimensions, but this performance
is also satisfactory for @RISK model as far as matching
the desired rank correlation is concerned. The author has
successfully tested both the proposed algorithm and
@RISK on generation of as many as 208 correlated vari-
ables with skewed marginal distributions. This larger test
has been published (Ilich and Despotovic, 2007) and it is
therefore not dealt with in this paper. It would appear that
Test Problem 2 already performs well with vectors of 52
dimensions, which seems much better than the perfor-
mance of the NORTA method reported by Ghosh and
Henderson (2003).

Test Problem 3
This test problem demonstrates how to find the regres-

sion coefficients for a given correlation matrix in Table 8
and for the assumed probability distribution parameters,
which are: Poisson with mean equal to 7 and standard devi-
ation of 2.6587 for variable 1; Normal distribution with a
mean of 5 and standard deviation of 3 for variable 2; and
Exponential distribution with a mean of 0.1 and standard
deviation of 0.1 for variable 3. Both the means and stan-
dard deviations are required for calculation of regression
coefficients. The following sections follows closely the
established procedures found in a range of statistical text-
books. It begins by partitioning the given correlation
matrix R into R11, R12, R21 and a single last diagonal coef-
ficient 1.0 in the final row, i.e.

R ¼ R11jR12

R21j1:0

� �
ð15Þ

implying that the last random variable is dependent and re-
gressed to the remaining variables. With this assumption, a
set of standardized regression weights b can be found by
solving a system of linear equations defined in (16):

R11b ¼ R12 ð16Þ

where b is a column matrix of standardized regression
weights. This process is repeated p � 1 times, where p is
the assumed rank of the given correlation matrix. Each
time the process defines one row of coefficients in the
regression matrix. To convert the standardized regression
weights into the desired raw weights it is necessary to use
the means mp and standard deviations sp of the random
variables and apply the following formulas:
Table 8
Correlation matrix for test Problem 3

Var 1 Var 2 Var 3

Var 1 1.000 �0.80 0.50
Var 2 1.000 �0.40
Var 3 1.000
bX pi ¼
sp

s1

b1X 1i þ
sp

s2

b2X 2i þ . . .þ sp

sp�1

bp�1X p�1;i þ ai ð17Þ

where intercept ai is found using

ai ¼ mp �
sp

s1

b1m1 �
sp

s2

b2m2 � . . .� sp

sp�1

bp�1mp�1 ð18Þ

while the regression error of estimate ei is related to the
standard deviation si of each variable through the multiple
correlation coefficient R as defined in Eq. (19):

ei ¼ si

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p
ð19Þ

Label the variables 1, 2 and 3 in this problem as X, Y and
Z. The calculation then proceeds as follows:

Using stepwise approach, solve for standardized regres-
sion coefficients bi using the matrix Eq. (16). For regression
variable X to Y in the given sample problem, the single
equation is

1:0 � b1 ¼ �0:8 ð20Þ
This is a regression coefficient of standardized variables x

and y, which can be converted to the regression coefficients
of the raw variables X and Y according to Eq. (17):

a1 ¼ ðSt:Dev:Y Þ=ðSt:Dev:X Þ � b1 ¼ 3=2:6587 � ð�0:8Þ
¼ �0:9027 ð21Þ

Hence, regression coefficient a1 = �0.9027
We can now calculate the intercept a0 using Eq. (18):

a0 ¼ m2 � a1m1 ð22Þ
where m2 and m1 are the means of Y and X, respectively.
Hence,

a0 ¼ 5� ð�0:9027Þ � 7 ¼ 11:3189 ð23Þ
Therefore, the first row of the regression matrix coefficients
contains 11.3189 and �0.9027 for a0 and a1, respectively (a2

is zero by default since we are only regressing Y to X in the
first equation). Calculation of the second row coefficients
proceeds below. Finding the second set of regression coef-
ficients requires finding a solution of a system of two
equations:

1:0b1 � 0:8b2 ¼ 0:5 ð24Þ
� 0:8b1 þ 1:0b2 ¼ �0:4 ð25Þ

The solution for the above system is b1 = 0.5 and b2 = 0.
Hence,

a1 ¼ 0:1=2:6587 � 0:5 ¼ 0:0189 ð26Þ
a2 ¼ 0:1=3 � 0 ¼ 0:0 ð27Þ

while,

a0 ¼ m3 � a2m2 � a1m1 ð28Þ
a0 ¼ 0:1� 0:0 � 5� 0:0189 � 7 ¼ �0:0323 ð29Þ

Hence, the second row of the regression matrix coefficients
contains �0.0323, 0.0189 and 0.0 for coefficients a0, a1 and
a2, respectively. The term 1 � R2 is found on the diagonal
elements of matrix C ¼ RT

11R11

� ��1
which also has to be
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calculated p � 1 times due to the need to redefine matrix
R11 for each dependent regression variable, which can be
done using standard matrix calculation techniques. The re-
sults for the term 1 � R2 for the first and the second row
are 0.36 and 0.75, respectively. The regression standard er-
rors of estimate are then:

ey ¼ 3:0
ffiffiffiffiffiffiffiffiffi
0:36
p

¼ 1:8 and ð30Þ
ez ¼ 0:1

ffiffiffiffiffiffiffiffiffi
0:75
p

¼ 0:0866 ð31Þ

where values 3.0 and 0.1 are the standard deviations of
variables Y and Z given in this problem. It should be noted
that the term 1 � R2 inside the square root allow us to de-
fine multiple R as 0.8 and 0.5 for variables Y and Z, respec-
tively. Also, the important feature of the algorithm is that
multiple R values are matched with the R values calculated
at the end of each iterative step during the search process,
as explained below.

In this example, we start by generating randomly all
three variables. The first variable is then taken as input X

into the above regression equations to generate re-ordering
keys for both Y and subsequently Z. At the end of this step,
the resulting sequence of 25 elements of all three vectors
and their correlation matrix is given in Table 9. Note that
the proposed algorithm does not calculate the correlation
matrix, which is given here for discussion purposes.
Table 9
Solution of the first iteration for test Problem 3

X Y Z

4 8.2168 0.0258
8 3.7564 0.1383
4 6.7770 0.0032

15 �2.0836 0.1752
8 3.6570 0.0312
9 2.3638 0.0765

12 �1.2004 0.1649
4 9.8237 0.0018
6 4.8026 0.0508
2 10.0136 0.0149
6 4.9422 0.0672
6 5.2477 0.1174
5 9.5011 0.0079
6 6.2770 0.0529
1 14.9360 0.0004
5 8.4465 0.0245

11 �0.3986 0.1702
11 2.2214 0.1704
8 2.6708 0.1372
7 4.5181 0.1021

10 1.2746 0.0917
8 4.5299 0.1466
8 3.3795 0.0614
5 6.4591 0.0583
6 4.9514 0.0321

Pearson correlations:

Var 1 Var 2 Var 3

1.000 �0.945 0.840
1.000 �0.811

1.000
It can be seen that the values of correlation coefficients
are far from the desired targets. Rather than calculate the
correlation matrix in every step, the proposed algorithm
recognizes this discrepancy by calculating multiple Ry
and Rz which are in this case equal to 0.945 and 0.842,
respectively, while their target values are 0.8 and 0.5. In
other words, the first attempt resulted in a fit that is above
target. The algorithm then proceeds according to the steps
4 through 7 in Section 4 to iteratively generate new
regressed targets by enlarging the initial values of ey and
ez until an order of the elements of Y and Z vectors has
been found such that their respective multiple R values
are sufficiently close to the desired targets. For assumed
respective values of ey and ez of 6.2 and 0.29, the order
of the elements of vectors Y and Z is shown in Table 10.
The calculated values of Ry and Rz statistics for this con-
figuration of elements is 0.857 and 0.521, fairly close to
their respective targets of 0.8 and 0.5. Also, the correlation
matrix in Table 10 shows a reasonably good fit with the tar-
get correlation matrix, especially given the small size of the
sample vectors of only 25 elements. A better fit is possible
by increasing the number of iterations by using a tighter
convergence criterion, as well as by increasing the number
of elements of random vectors.

It is interesting to note that an attempt was made to find
an approximate solution for this test problem with @RISK
Table 10
Solution of the final iteration for test Problem 3

X Y Z

4 4.9422 0.0018
8 2.2214 0.0508
4 10.0136 0.0032

15 �2.0836 0.1174
8 6.4591 0.1021
9 1.2746 0.1704

12 �1.2004 0.1372
4 9.8237 0.0583
6 3.7564 0.0765
2 9.5011 0.0004
6 4.8026 0.0917
6 4.5181 0.0079
5 8.2168 0.1752
6 5.2477 0.0312
1 14.9360 0.0672
5 4.5299 0.0258

11 �0.3986 0.1702
11 3.6570 0.1649
8 4.9514 0.0245
7 2.3638 0.0149

10 3.3795 0.0529
8 6.7770 0.0321
8 2.6708 0.1466
5 8.4465 0.1383
6 6.2770 0.0614

Pearson correlations:

Var 1 Var 2 Var 3

1.000 �0.858 0.496
1.000 �0.343

1.000
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package, an approximation arising from the fact that the
input correlation matrix for @RISK contains rank correla-
tions instead of the product moment correlations. The
@RISK program reported that the given correlation
matrix was infeasible and failed to provide a reasonable
solution.

6. Conclusions

This paper presents an algorithm for inducing Pearson
correlations among random vectors with any statistical dis-
tribution functions. The method is easy to implement. It
can be used to induce statistical dependence among vari-
ables with arbitrary marginal distributions, including
empirical distributions with no explicit formulations.
Future research may involve attempts to induce non-linear
statistical dependence among random variables with arbi-
trary distribution functions, examine the impact of high
dimensions on the accuracy of the algorithm, or focus on
additional algorithmic refinements.
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