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Importance of multiple time step optimization in river basin planning and 
management: a case study of Damodar River basin in India
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ABSTRACT
This paper outlines the importance of multiple time step optimization (MTO) in river basin allocation. The 
principal novelty of the work presented here is to provide a methodology for how to use MTO solutions in 
river basin planning and real-time operation. Two approaches for using the MTO results were tested on 
Damodar River basin in India and are presented in the paper. Using the proposed approach, the model 
managed flood flows without exceeding the downstream full bank channel capacity in 35 years of 
available historical data, while at the same time increasing generated hydropower on average by 63% 
annually, and supplying an additional 350 million m3 to irrigation and industry compared to the historical 
levels. The results presented in this study were obtained using the new Web-based Basin Management 
(WEB.BM) water management model, the only water allocation model with full Linear Programming (LP) 
optimization capabilities available online free of charge.
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Introduction

The use of computer models has become essential in river 
basin planning and management. A large number of computer 
models are used in the water resources sector, which differ in 
many ways depending on their purpose. This paper deals with 
river basin management models, which can be defined as 
models that find the most suitable set of reservoir releases 
and water use patterns over a specified time horizon. Several 
modelling approaches have been used in the past, generally 
divided into “rule based” and “optimization based,” where 
optimization models can be further subdivided into additional 
categories depending on the nature of the optimization engine 
(e.g. heuristic solvers or solvers based on some form of math
ematical programming). Regardless of the actual modelling 
approach, most model vendors advertise the suitability of 
their models for addressing river basin management tasks. 
This is facilitated by the lack of strict acceptance criteria 
among water resources practitioners. In this context, the use
fulness of the word “optimization” has been diminished, since 
everyone seems to claim that their model possesses the ability 
to “optimize” the search for the best solution, including the 
vendors of rule-based models such as MIKE-BASIN (Danish 
Hydraulic Institute 2020). Recent initiatives related to the 
model selection process for Narmada River basin in India 
were aimed at introducing more technical rigour into this 
field, thus setting higher expectations for model vendors 
regarding future applications of their models (Ilich et al. 2019).

Usually, decision-making processes in water resource mod
els either are based on a set of user-specified operating rules, or 
use some type of mathematical optimization approach aimed 
to find the best set of hypothetical regulated flows that 

minimizes or maximizes a given objective function. These 
models simulate decisions of reservoir operators and river 
basin managers. For example, in times of water shortage, 
these models should be able to provide solutions that can 
bypass upstream users and provide water to downstream 
users that have higher priorities.

To demonstrate the wide variety of existing models, reservoir 
operation models were briefly reviewed by Wurbs (1993), and 
later by Labadie (2004). These two papers present a compressed 
summary of more than 50 models. There is no single favourite 
river basin management model with widespread use among 
practitioners. While some model vendors have invested con
siderable effort in advertising and promoting their models, 
a model’s capabilities and performance can only be demon
strated by using it to provide successful solutions to challenging 
test problems – demonstrations which are sorely lacking in the 
relevant literature. The only test problem that has repeatedly 
been used in the industry dates back to 1979 (Murray and 
Yakowitz 1979), with four reservoirs and 12 consecutive time 
steps. Both this problem and its larger version (with 10 reser
voirs over 48 monthly time steps) are very simple. They exclude 
net evaporation on reservoirs and variable outflow capacities 
dictated by the available storage, and they were mainly used to 
test new solution strategies that rely on various heuristic solvers.

Early optimization-based river basin management models 
for water distribution along water resource networks used 
simplified linear programming algorithms, specifically 
designed for network flows, typically referred to as network 
flow algorithms (NFAs). While NFAs offer high solution 
speed, they are unable to include dynamic flow constraints 
that are typical for water resource networks. The only con
straints that can be modelled within the NFA framework are 
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the continuity of flow at each node and the upper and lower 
flow limits in flow links such as canals. Constraints such as the 
return flows from irrigation districts that depend on the simu
lated water use, or maximum reservoir releases that depend on 
average storage over a simulated time step, were initially 
addressed within NFA solvers with iterations. Unfortunately, 
iterations often fail to converge to optimal solutions, and may 
instead converge in the wrong direction (Ilich 2009).

Despite this, many NFA-based models such as MODSIM 
(Colorado State University 2020), REsource ALlocation Model 
(REALM) (Gov. of Victoria 2020) and Hydrologic Engineering 
Centre Reservoir Prescriptive Management (HEC-ResPRM) (US 
Corp of Engineers 2019) became popular among practitioners 
over the years. The shortcomings of the NFA models were noted, 
with eventual use of commercial mixed-integer Linear 
Programming (LP) solvers that were incorporated in models 
such as RiverWare (Zagona et al. 2001), OASIS (Rundall et al. 
1997), Hydrologic Engineering Center - Flood Control Linear 
Programming (HEC-FCLP) (Needham et al. 2000), and Web- 
based Basin Management (WEB.BM) (Ilich 2019). Mixed-integer 
programming (MIP) solvers were needed instead due to the use of 
binary variables required to ensure the right sequence of filling 
and emptying storage zones on reservoirs (Ilich 2008).

River basin allocation models have traditionally been run by 
simulating a sequence of individual decisions made in each simu
lated time step, which is usually referred to as single time step 
optimization (STO). In such runs, an optimization engine is still 
applicable for allocating water among competing stakeholders; 
however, a decision related to water release in the current time 
step affects available management options in subsequent time 
steps, so to truly optimize water allocation for an entire irrigation 
season or a hydrological year, the model should solve a sequence 
of several consecutive time steps assuming known runoff forecasts 
and water demands. This is known as multiple time step optimi
zation (MTO). The reasons the MTO modelling approach is 
rarely used among practitioners are: (a) very few models are 
capable of delivering these solutions and they are rather expensive 
(e.g. RiverWare and OASIS); (b) the MTO model computation 
times are much longer and their debugging requires above- 
average technical skills; and, most importantly, (c) there are no 
clear guidelines on how to use the model outputs, based on the 
fact that long-term hydrological forecasts are not available.

The principal novelty and contribution of this paper is to show 
that there is an effective way to both develop and interpret MTO 
solutions such that they can (a) help revise the existing operating 
rules; and (b) use the MTO as a real-time reservoir operational 
tool over a short time horizon, based on combining the revised 
operating rules developed under (a) in a combination with short- 
term runoff forecast models. The paper demonstrates the poten
tial value of this approach on a case study in India.

In the first section, the paper presents the origin of the rule 
curve concept and discusses its use to improve STO solutions, 
as well as its shortcomings. This is followed by a presentation 
of the MTO solution concept and its advantages over the STO 
solutions. The next section lays out the basis of the methodol
ogy developed in this study, followed by its application on 
a case study, and a brief review of an alternative attempt to 
address the problem of learning from MTO solutions by using 
the pattern-matching algorithm. The discussion section and 

the concluding remarks summarize the findings of the two 
approaches that were investigated and provide suggestions 
for further research and development.

The concept of reservoir rule curves

A significant majority of popular water allocation models, such as 
MODSIM (Colorado State University 2020), REALM (Gov. of 
Victoria 2020), AQUATOOL (Haro et al. 2012) and HEC-ResSIM 
(US Army Corps of Engineers 2020) use STO solutions, which 
means that they do not take into account forthcoming hydrologi
cal conditions and water demands beyond the length of a single 
time step. The principal disadvantage of this approach is displayed 
in the two graphs at the bottom of Fig. 1, which show crop failure 
in both years. To avoid this, irrigation managers typically hedge 
their demands in extremely dry years – i.e. they lower their targets 
to reduce the chances of crop failure. Their dilemma is then to 
determine the level of reduction that is the most appropriate for 
the current conditions, which is currently a matter of the gut 
feeling of the operators and management committees.

The concept of the reservoir rule curve was developed by 
Ravelle and Kirby (1970) to avoid the issues, presented in Fig. 
1, that are associated with the STO solution procedure. The 
rule curves are shown as dashed lines in the top left diagram in 
Fig. 1. This concept allows model users to define maximum 
permissible drawdown water levels, with a high penalty factor 
associated with their violation. In essence, the rule curve 
shown in Fig. 1 defines the amount of usable storage during 
an irrigation season, where the drop of storage levels in the 
curve from one time step to the next defines the maximum 
storage drawdown.

Most river basin planning models rely on reservoir oper
ating rules that are defined by the shape of their rule curves. 
Rule curves are usually static target water levels that do not 
change from year to year. Yet their shape is a function of 
the storage at the start of an irrigation season, and of 
incoming runoff and estimated water demands throughout 
the irrigation season, which implies uniqueness in 
every year. The concept is not applicable in the case of 
two or more sequential dry years, which make it impossible 
for the model to follow the desired rule curve shape in 
the second and subsequent dry years due to insufficient 
starting elevation and runoff required for simultaneous refill 
of storage and downstream consumption. The idea of con
structing the reservoir rule curve and using it as a model 
constraint can be understood as imposing a user-defined 
solution in the input data file, which defies the purpose of 
optimization. In reality, the best set of reservoir levels can 
only be developed as part of the optimized model output, 
unique for every simulated year, and also inclusive of the 
optimal managing of water demands (hedging) in dry years. 
Since the original concept was proposed by Ravelle in 1970, 
rule curve development has remained in the domain of the 
trial-and-error approach, with its ultimate shape being 
heavily dependent on the judgement of the modeler, rather 
than on the results of a standardized procedure or a widely 
accepted approach.

The main advantages of the multiple time step optimization 
(MTO) modelling approach presented in the next section are:
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● For planning studies, the model input does not need any 
rule curves; and,

● MTO results contain a perfect rule curve for each 
simulated year. As such, statistical analyses of the model 
results can provide insight into better operating rules, 
especially when they are based on a large number of 
simulated hydrological input sequences that can be pro
duced using a reliable stochastic flow generation model.

In addition to the above, MTO solutions can combine perfect 
reservoir operation with optimized demand hedging policies, 
which are also obtained as part of the model solution via 
incorporating the appropriate constraints in the model.

Multiple time step optimization

MTO is based on the assumption that inflows for several 
consecutive forthcoming time steps are known. In planning 
scenarios, the entire historical inflow series is provided to the 
model as known inflows. Since water demands are also known, 
this allows the model to determine perfect reservoir levels and 
demand hedging policy in a single run for each year, without 
the need to resort to any iterative schemes. The MTO solution 
approach is not entirely new; it was used to compile the 
California State Water Plan (Lund 2003), but so far there has 
been no accepted methodology established on how to use long- 
term perfect model solutions to improve future reservoir 
operations in real time when inflows are not known.

As a demonstration of the MTO approach, the model set-up 
is shown for three consecutive time steps in Fig. 2. This example 

has one diversion canal, one irrigation block, one reservoir and 
two river reaches. The use of only three time steps in Fig. 2 is 
aimed to explain the concept that can be extended to any 
number of time steps with available inflows and water demand 
data. Channel flows and ending storage volumes for each time 
step feature as decision variables, which are labelled as variables 
Xi,t in Fig. 2, where the subscript i represents the modelled 
component while the subscript t represents the time interval. 
Variables can be either in units of volume or, as assumed in this 
case, in units of flow, so that [Vinit(1)/t] represents reservoir 
storage in the units of flow at the start of the simulation. For 
single time step solutions (STO mode), the schematic in Fig. 2 
would only have the left third, showing the reservoir in the first 
week with inflow, diversion into an irrigation block and the 
outflow channel. When there is enough water supply, then Xi,t  
= Di,t, implying that the deficits are equal to zero.

In the MTO solution mode, the same physical reservoir is 
connected with the storage carry-over arc, which ensures that 
the ending storage from one time step automatically begins the 
starting storage for the subsequent time step. Although net 
evaporation is not included in Fig. 2, it should be modelled as 
a gain or loss on the storage carry-over arc. It is necessary to 
define the value of Pi per unit of flow for each component 
shown in Fig. 2, including storage, which typically assumes the 
lowest value of Pi compared to other components in order to 
conserve excess runoff after all downstream demands are met. 
To ensure allocation, users must assume that supplies to irri
gation block defined by variables X1,t have a higher value of Pi 
per unit of flow compared to its value assigned to storage. The 
weight factors assigned to flows in the river reaches are set to 

Figure 1. Reservoir levels (above) and achieved vs demanded supply (below) for STO.
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zero unless there are environmental flow targets to be main
tained, in which case the weight factor would be assigned 
a positive value on the basis of its priority compared to other 
water users. We denote carry-over storage as a variable, since it 
enables balancing of storage between consecutive time inter
vals, i.e. 

X4;t ¼
V1;t

Δt
(1) 

where ∆t is the length of the calculation time step. The objec
tive function is specified as: 

Max
Xn

i¼1

Xm

t¼1
Xi;tPi (2) 

where in the above example n = 5 is the number of compo
nents, which include one reservoir, one irrigation block and 
three channels, while m = 3 is the number of time intervals 
shown in Fig. 2, although in planning studies m should be 
equal to the number of time intervals within a year. In its 
simplest application, the above objective function is subject 
to the following constraints: 

Xn

i¼1

Xm

t¼1
ðXi;t þ Qi;tÞ ¼ 0 (3) 

0 � Xi;t � Ui;t (4) 

Equation (3) represent the mass balance constraint, while 
Equation (4) sets the lower and upper bound on all variables. 
Inflows Qi,t are treated as given inputs of available runoffs at 
a node, and they can theoretically be given for any node in the 
network, although in practice only some of the nodes will have 
inflow series representing the available sub-catchment runoff. 
Upper bounds Ui,t in Equation (4) represent limits associated 
with the storage or flow capacity of canals. Irrigation demands 
also have their targets set for each time step, which will be 
represented as the upper bounds. To ensure equal spread of 
deficits throughout an irrigation season in a dry year, the 

following constraint can be added to equate the ratio of sup
plied and demanded quantities in all time intervals: 

X1;tþ1

D1;tþ1
¼

X1;t

D1;t
(5) 

In dry years, when irrigation deficits are inevitable, the model 
finds the minimum deficit for the entire year by combining 
storage and the available runoff, and spreads it evenly through
out the year. This amounts to optimized demand hedging, 
which is conducted simultaneously with finding optimal reser
voir operation in each year and for each reservoir in the 
system. Other constraints were added in this study to handle 
net evaporation and dynamic flow limits through the hydro
power plants as a function of the available storage and the 
capacities of turbines and generators. Future model refine
ments of this study may include outflow limits on spillways 
as a function of the available storage, return flows that should 
be modelled as a fraction of consumptive use, or runoff appor
tionment agreements between bordering states once such 
agreements are contemplated as model inputs.

The way the optimization problem is defined in Equations 
(2) through (4) could also be solved with an NFA algorithm, 
although the required solver would have to include the ability 
of loss or gain of flow along an arc to properly model net 
evaporation. In addition to this, the best known NFA-based 
models such as MODSIM or REALM cannot handle MTO 
solution approaches at all; they can only solve STO allocations. 
Adding Equation (5) makes this problem ineligible for use 
with any NFA solution approach. Additional complexity that 
cannot be handled by NFA algorithms includes the reservoir 
outflow constraints, which need to be specified as a piece-wise 
linearized function of the available storage over a time step. 
The similar relationship between the maximum possible flow 
and the average storage over a time step also needs to be 
linearized for flows through hydropower plants.

In addition to all of the above, the model should be able to 
handle variable time step lengths, which in this study range 
from 10 days in the dry season to 3 days in the monsoon 

Figure 2. Sample MTO configuration for three consecutive time steps.
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season. Of all available linear programming-based models, 
only two are currently capable of handling all of the above 
requirements: OASIS and WEB.BM. Unlike OASIS, the WEB. 
BM model, which was used in this study, is web based and 
freely available online via www.optimal-solutions-ltd.com, or 
alternatively at www.riverbasinmanagement.com.

The last point to make related to the MTO solutions is the 
fact that they rely on perfect foreknowledge of inflow hydro
graphs for the entire season (or hydrological year), which is 
never available in practice. This raises a legitimate question: 
how should the results of MTO optimization be used? In their 
recent comprehensive article that includes an in-depth survey 
of the available literature on heuristic solvers, Dobson et al. 
(2019) review the use of optimization, distinguish between rule 
curve-based models and multiple time step solutions, and 
outline the need to apply artificial intelligence algorithms 
that can learn from numerous MTO solutions and apply 
their results in real-time operation.

To enlarge a learning database of MTO solutions, research
ers typically resort to the use of implicit stochastic optimiza
tion, where lengthy stochastic flow frequencies are first 
developed and fed to the reservoir optimization models so as 
to produce a multitude of optimal solutions that serve as input 
into various inferential models with an aim to “guess” the best 
reservoir releases based on the current state of the system, such 
as the current storage levels, along with the recent or forecasted 
precipitation or inflows.

Willis et al. (1984) present typical work that outlines this 
approach, where the optimization results are regressed against 
the starting storage and monthly inflow forecast in each 
monthly solution, thus providing the monthly forecast of 
reservoir releases based on the month of the year and its 
starting storage. Virtually all publications that followed used 
a variation of the same theme, with non-linear regression used 
by, for example, or other inferential models such as neural 
networks (Chandramouli and Deka 2005).

Gavahi et al. (2019) provide an example of a single 
reservoir optimization problem solved with MTO where 
the solutions are fed as input into an adaptive neuro- 
fuzzy system along with 1 month inflow forecasts based 
on the regression of the flows in the 3 previous months. 
The intention was to predict optimal monthly releases in 
real time that are similar to the MTO solutions for similar 
inflow conditions and starting reservoir levels, without 
using any user defined rule curves. While the use of linear 
programming guarantees the best MTO solutions in this 
study, monthly time step solutions are not suitable as 
a guide for real-time operation, and most water resources 
systems nowadays have multiple reservoirs that need to be 
operated as a system, not as individual units.

Rani and Moreira (2010) provide an excellent summary of 
the state of the art of the currently available reservoir model
ling tools. Most research publications in this area deal with 
monthly time steps and single reservoir systems, which 
explains to some extent the gap between the theory and prac
tice, since (a) inflow forecasts are neither constant over 
a month nor available over the entire month in real time; 
and (b) modern water resources systems are typically multi- 
reservoir and multi-purpose.

The inherent problem with the use of inferential algorithms 
that are supposed to set the best reservoir outflows based on 
the state variables and the time of the year is that they are 
unable to accurately take into account downstream constraints 
that should not be violated, such as the full bank flow capacity 
or the exact amount of water demand on an irrigation block. 
Only an optimization model that takes into account the mass 
balance, water demands and constraints can take all of the 
above into account properly, and derive the best solution 
based on the use of mathematical programming.

This has been recognized in the past, and Yazicigil et al. 
(1983) is a rare example of published work that tackles the 
problem in the right way. This study derives daily reservoir 
releases on the basis of inflow forecast over a 5 days horizon, 
by solving MTO for 5 d ahead. There are multiple issues with 
the way the solution is derived. The storage outflow vs elevation 
constraints were not included in the model, nor is there a proper 
hydrological routing in sequential downstream river reaches, 
and it uses questionable rule curves to guide the model solutions 
that were taken from other studies based on simplistic simula
tion models. However, the idea that a short time horizon may 
provide a reliable flow forecast that could be used to drive real- 
time operation for 5 d ahead, where only the solution for the 
first day would be adopted for real-time operation, while this 
process is repeated for every subsequent day, is a good approach 
that has been adopted in this study. This idea is laid out in more 
detail in the following section, but the basics that outline the 
uniqueness of the approach are listed below. In short, there are 
two novelties in the proposed approach:

(a) A unique way to construct the reservoir operating 
zones by using the MTO approach and by conducting 
statistical analyses of MTO solutions; and,

(b) The use of MTO for real-time operation, on the basis of 
the operating zones constructed in phase (a) combined 
with the availability of short-term runoff forecasts.

In addition to the above, an attempt was also made to generate 
estimates of reservoir outflows based on a pattern-matching 
algorithm that matched the inflows and the starting storage 
with the median release obtained from filtering the eligible 
solutions from a database of 1000 years of MTO solutions 
based on stochastic inflow and precipitation series. The pro
posed methodology for both approaches and the results 
obtained from the case study are presented below.

Methodology

A block diagram representing the proposed approach is shown 
in Fig. 3. The stochastic generation of inflows may not be 
needed if the historical series is sufficiently long (i.e. close to 
100 years). However, this is usually not the case, and in general 
a larger statistical sample provides more reliability in any 
statistical analysis.

Historical natural flows should be determined by a process 
that involves the removal of the effects of storage reservoirs 
and diversions caused by human intervention. This is achieved 
by recalculating reservoir inflows and by adding back the 
historical water abstractions to the recorded river flows. This 
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is a much more reliable approach to estimate natural runoff 
than the use of rainfall–runoff models, which may be cali
brated for a few years of rainfall and runoff data, but which 
often fail in the verification phase over longer time periods. 
Rainfall–runoff models should be used to estimate natural 
runoff only as a last resort option.

A stochastic model can extend the length of the hydrologi
cal input and generate many more combinations of back-to- 
back dry or wet years, the likes of which are not available in the 
historical records. The results of any stochastic generation of 
hydrological time series should be verified by comparing its 
statistics with the statistics of the historical series.

Step 3 refers to the MTO model set-up and preparation of 
all required input data generated in steps 1 and 2. The resulting 
output is a database of 1000 years of optimal solutions that 
contain reservoir levels and channel flows for each time step of 
each simulated year. Step 4 summarizes the process of creating 
reservoir operating zones on the basis of the MTO solutions.

Simulated storage levels follow a typical pattern of draw
down and refill in each simulated year. When derived using the 

MTO solutions, they represent perfect reservoir operating 
rules for each simulated year. If they were all plotted on 
a single graph there would be too many lines, which would 
make visual inspection illegible. Instead, a probability density 
function can be constructed for the end of each time step, as 
displayed in Fig. 4. This strengthens the argument for using 
1000 years of stochastic solutions rather than only 35 years of 
historical solutions, since a larger data sample results in a more 
reliable statistical function that covers a wider range of prob
abilities. It may be noted that studies of this kind can be done 
without stochastic hydrological series in instances where the 
historical records are close to 100 years long. However, this 
situation is rare for most river basins.

Assume that all median values for the relevant statistical 
distribution functions in each time step are connected. This 
should represent the most likely simulated water levels for the 
entire year. Selected elevations with given percentile probabil
ities (e.g. 10th, 20th, 80th or 90th percentiles) at the end of all 
simulated time steps can be connected in a similar fashion to 
create the operating zones for all five reservoirs based on the 

Figure 3. Block diagram of the proposed methodology.

Figure 4. Statistical analyses of MTO solutions.
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MTO solution results, thus creating an MTO-based design 
process of reservoir operating zones.

Step 5 involves a different model set-up for short-term 
operation that utilizes the zones created in Step 4. The inter- 
reservoir operating rules from step 4 determine the sequence 
of reservoir releases during the normal operation. The number 
of zones is the same for all reservoirs, and the assumed operat
ing rule is that all reservoirs remain in the zone of the same 
order. During normal operation, zones are emptied and 
refilled in a sequential order throughout the year, and this 
policy merely helps the model determine the sequence of 
storage releases for downstream needs that can be met by 
a numerous combination of releases in multi-reservoir sys
tems. The actual releases are made by a sequence of MTO 
solutions over a short time horizon for which the runoff fore
casts are assumed to be available, and they may occasionally 
violate the storage sharing concepts in extraordinary circum
stances when managing floods by using a combination of pre- 
flood drawdown and controlled releases that are derived as 
part of the MTO solution. An alternative approach that has 
been tested differs from the above in the last two steps shown 
in Fig. 5.

It can be noted that the alternative algorithm does not 
attempt to explicitly derive reservoir outflows, but rather 
attempts to guess the ending storage levels for the end of the 
current time step, since it is matching the current conditions 
with the database of MTO solutions realized over the stochas
tic inflow series. Given the inflow forecast and the ending 
storage, it is possible to retrieve the desired outflow by using 
the water balance calculation for each reservoir.

The following section describes the application of the above 
approaches to a real-world problem, and discusses the results 
of the numerical experiments that were conducted using each 
of the proposed methods.

Damodar River basin

Damodar River basin is located in West Bengal, India. There 
are five reservoirs in the basin, designed for multi-purpose 
water uses including water supply for irrigation, industries 
and municipalities, hydropower generation and flood protec
tion in the downstream reaches, as shown in the modelling 
schematic in Fig. 6, with the squares representing irrigation 
water use. The basin is currently operated using previously 
developed static reservoir rule curves.

Panchet and Maithon are the largest dams in Damodar 
basin, with total installed hydropower plant capacities of 
80 and 60 MW, respectively. The management challenge in 
this basin is to operate the five reservoirs in the system so as to 

minimize flood damage in the most downstream river reach, 
while simultaneously maximizing hydropower production and 
maintaining required water supply for irrigation, municipali
ties and industries. Historically, water supply was manageable; 
however, water demands will be increased significantly in 
future, making the task of delivering required amounts to all 
users more challenging. The principal issue in this study is to 
manage floods and generated power, such that flood damage is 
reduced, with minimal negative overall impacts on hydro
power producers. There are 35 years of historical hydrological 
data provided in this study, starting in 1981. A modelling time 
step duration from 10 d in the dry season to 3 d in the period 
1 July to 30 September was set up, with a gradual transition in 
the months of June and October with time steps of 4 or 5 d. 
Modelling was based on running a continuous simulation with 
a variable time step length for all 35 historical years of record. 
Since 35 years is not a long period for statistical analyses of 
model output, an alternative stochastic 1000-year hydrological 
series of flows and precipitation was created and used as model 
input. The shortest time step of 3 d was based on the total 
travel time between Tilaiya and Maithon reservoir being 
slightly less than 2 d, which removed the need to use hydro
logical routing, for which there were no sufficient data for 
calibration at this point. Hence, the model was run on a steady- 
state basis. Shorter time steps introduced more challenge when 
modelling monsoon floods.

Description of modelling scenarios

The following scenarios were set up:

(a) Verification scenario: historical reservoir outflows 
in this scenario were enforced, and the resulting 
simulated reservoir levels were compared with the 
historical levels. A perfect match between the his
torical and simulated reservoir levels confirmed 
correct historical runoff estimates. Note that 
a perfect match is only possible if runoff is calcu
lated correctly, since there are no parameters that 
need to be calibrated.

(b) Optimization scenario: the same runoff estimates con
firmed in the verification scenario were used as inflows, 
and the same starting reservoir elevations as in 1981, 
but the model was set up to find the best reservoir 
operation that maximizes the stated objectives, which 
were to
– minimize damage from flooding downstream of 

Durgapur Barrage (the last river reach shown in 
the modelling schematic in Fig. 3;

Figure 5. Alternative pattern-matching algorithm.
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– meet all municipal, industrial and irrigation demands; 
and

– maximize generated hydropower.

(c) Stochastic optimization scenario: This scenario used 
1000 years of stochastically generated hydrological 
input data series of flows and precipitation. The pur
pose of this scenario was to analyse optimal reservoir 
levels and provide insight into alternative rule curves 
that could better address the management goals. The 
final output of this scenario is the adjusted reservoir 
operating zones for all reservoirs, with the target zone 
based on the 50th percentile elevations for each time 
step that were obtained from the 1000 years of optimal 
basin operation. Other statistics of simulated water 
levels, such as 10th and 90th percentiles, were also 
used in the definition of reservoir operating zones.

(d) The final scenario included a combination of the 
adjusted rule curves and operating zones with the 
short-term model runs based on MTO solutions for 
two consecutive time steps. During the monsoon sea
son, two consecutive time steps would require inflow 
forecasts for a total of 6 d. 

To avoid downstream flooding, the model was constrained to 
keep the combined outflows from Maithon and Panchet to less 
than 3300 m3/s. Both historical and optimal scenarios included 
net evaporation losses on reservoirs as a function of the aver
age reservoir area over a time step. Historical operation 
showed water levels in the flood storage zone (above 146.3 m 

for Maithon and 124.97 m for Panchet) in many years in which 
there was no flooding, which was likely inspired by the desire 
to increase generated hydropower. Also, in many historical 
years reservoirs are drawn down much more than necessary, 
probably due to the policy to follow a similar operating rule 
curve in each year, which caused unnecessary loss of generated 
power in moderate and wet years. Figures 7 and 8 compare 
historical and optimized reservoir operation. The verification 
run (historical operation) and the results of two model runs are 
compared in more detail later.

Figure 9 shows the flows in the Damodar River below 
Durgapur Barrage. Optimized simulation was based on high 
maintenance flows of 184 m3/s from July to October, which 
are always achieved in optimal simulation, but which were not 
always achieved historically despite being a stated goal. Four 
historical violations of the 3300 m3/s flow limit were recorded in 
the period from 2000 to 2010, as shown in Fig. 9. Although there 
are large water demands downstream of both Maithon and 
Panchet Dams, they are all met without much drawdown on 
the Panchet reservoir. This can be explained by the modified 
operation of the Konar and Tenughat dams, located upstream of 
Panchet. The optimization algorithm forced releases from these 
two reservoirs first to maintain Panchet water levels close to 
normal and to provide sufficient outflows for all downstream 
water demands. This was driven in part by the objective to 
maximize generated hydropower, with the Panchet dam having 
the largest hydropower capacity (80 MW) in the system.

It becomes obvious that overall, considerable improvement in 
basin management is theoretically possible. However, the optimal 
solutions in Figs 7–8 are based on perfect foreknowledge of 

Figure 6. Damodar River basin modelling schematic.
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inflows for the entire year. The pertinent question is: How do we 
use this information, especially since the historical series of 
35 years will never repeat exactly the way it unfolded between 
1981 and 2016? The first step is to statistically examine the output. 
Figures 10–12 show the difference between the historical and 
simulated 90th percentile, median and 10th percentile water levels 
for Maithon, Panchet and Tenughat dams.

Historical operation of Tenughat reservoir often involved 
water levels lower than the design. The reasons the reservoir 

was operated this way historically might be that in the earlier 
days it was operated as an independent single reservoir under 
what was then Government of Bihar (which later came under 
Jharkhand after the rearrangement of the state of Bihar in 
November 2000). However, the model utilized the full live storage 
at the design level, and added additional storage at Konar dam for 
meeting all downstream demands, while keeping the water levels 
at Panchet Dam significantly higher than during historical opera
tion, which consequently produced more hydropower. During 

Figure 7. Comparison of historical and optimal Maithon reservoir operation.

Figure 8. Comparison of historical and optimal Panchet reservoir operation.
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significant flood events, water levels were reduced on some reser
voirs prior to the incoming flood, which helped keep the flood 
flows within the full bank capacity of the downstream channel.

Alternative stochastic inflow series

The principal shortcoming of the statistics provided in 
Figs 10–12 is that they are based on only 35 years of historical 
data. It should also be noted that the first 2 years in the 35-year 
series are the among the driest on the record, which produced 

unusually low water levels using the starting water levels in 
1981, that were significantly below average for most reservoirs. 
To remove the bias and limitations associated with this parti
cular series, a stochastic series of runoff estimates and precipi
tations was generated for a hypothetical 1000-year time series, 
using a previously published stochastic generator (Ilich 2013). 
All relevant statistics (means, standard deviations, probability 
distributions, significant lag cross-correlations and auto- 
correlations) for both the selected time steps lengths and on 
an annual basis have been preserved. For brevity, only annual 

Figure 9. Comparison of historical and optimal flows below Durgapur Barrage.

Figure 10. Maithon reservoir historical (left) and simulated (right) water level statistics.

Figure 11. Panchet reservoir historical (left) and simulated (right) water level statistics.
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statistics are shown in Table 1, which are matched reasonably 
well although the stochastic model does not use the decom
position principle.

Based on the 35 years of historical data that were used as 
input into a stochastic model, a 1000-year stochastic series of 
flow and rainfall data were generated in this study and used as 
input into the optimization model to obtain 1000 years of 
perfect model responses, i.e. to produce the best possible reser
voir operation with assumed perfect forecast over each of the 
statistically possible 1000 hydrological years. These model solu
tions can then serve as a learning database for analysing reser
voir operating rules. Although statistically similar to the 

historical series in terms of probability distribution functions 
and other relevant statistics, the stochastic series has drier and 
wetter hydrological years compared to the relatively short 
35 years of historical record. It also has more occurrences of 
back-to-back dry or wet years, thus posing a greater challenge 
for the optimization solver to find the best solution in each 
simulated year. Only one out of 1000 years resulted in flooding 
the valley below Durgapur Barrage. Comparisons of statistical 
storage levels obtained from the 35 years of historical flows 
(which were compared to historical operation in Figs 10–12) 
and statistical analyses of the 1000 years of optimal solutions 
based on stochastic flows are shown in Figs 13–16.

Figure 12. Tenughat reservoir historical (left) and simulated (right) water level statistics.

Table 1. Annual cross-correlations between all reservoir inflows and precipitations.

Historical local runoff into major reservoirs Historical precipitation on major reservoirs

Panchet Maithon Konar Tenughat Tilaya Panchet Maithon Konar Tenughat Tilaiya

Panchet 1 0.823 0.812 0.917 0.688 0.472 0.725 0.786 0.705 0.658
Maithon 1.000 0.886 0.765 0.757 0.325 0.766 0.741 0.544 0.564
Konar 1.000 0.748 0.800 0.326 0.727 0.862 0.554 0.544
Tenughat 1.000 0.603 0.519 0.732 0.793 0.752 0.723
Tilaya 1.000 0.284 0.698 0.746 0.497 0.648
Panchet 1.000 0.571 0.481 0.598 0.552
Maithon 1.000 0.832 0.741 0.735
Konar 1.000 0.739 0.767
Tenughat 1.000 0.788
Tilaiya 1.000

Stochastic local runoff into major reservoirs Stochastic precipitation on major reservoirs

Panchet Maithon Konar Tenughat Tilaya Panchet Maithon Konar Tenughat Tilaiya

Panchet 1.000 0.813 0.806 0.884 0.760 0.622 0.703 0.792 0.669 0.660
Maithon 1.000 0.846 0.744 0.754 0.558 0.731 0.727 0.592 0.586
Konar 1.000 0.738 0.740 0.615 0.713 0.831 0.630 0.572
Tenughat 1.000 0.744 0.666 0.701 0.752 0.736 0.685
Tilaya 1.000 0.582 0.709 0.703 0.623 0.658
Panchet 1.000 0.757 0.727 0.774 0.715
Maithon 1.000 0.761 0.782 0.714
Konar 1.000 0.747 0.712
Tenughat 1.000 0.750
Tilaiya 1.000

Mean annual flows and precipitation

Historical 195.08 178.11 26.88 126.07 18.28 20.26 20.12 18.98 19.27 19.47
Stochastic 195.96 180.10 27.18 127.77 18.72 20.44 20.23 19.14 19.42 19.68

Standard deviation of annual flows and precipitation

Historical 60.27 50.09 7.65 52.79 10.37 3.05 4.62 5.46 3.24 4.79
Stochastic 74.27 61.73 9.64 69.01 12.33 7.80 7.51 8.01 7.05 8.00
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The result of removing the bias of a short historical record 
is seen in the stochastic scenario, where reservoir levels are 
maintained a bit higher than in the historical scenario, and 
where the statistical percentile curves tend to be smoother. 
This bias is due to the statistically small sample of only 
35 years, compounded by a combination of low starting sto
rage level and very dry hydrological conditions in the two 
starting years. This bias can be corrected by using a much 
longer statistical sample of solutions based on the stochastic 
input series.

Conceptual development of an optimization model 
with short-term inflow forecasts

A short-term operational model with hydrological forecast 
available over two simulated time steps was based on the 
use of reservoir operating zones shown in Figs 17 and 18. 
The normal water level (NWL) for the zones corresponds 
to the 50th percentile elevations for the end of each time 
interval, obtained from the stochastic optimizations with 
1000 years of data that are shown in Figs 13–16. There are 
two zones above the NWL and five zones below it, with the 

Figure 13. Maithon reservoir stochastic (left) and historical (right) optimal solutions.

Figure 14. Panchet reservoir stochastic (left) and historical (right) optimal solutions.

Figure 15. Tenughat reservoir stochastic (left) and historical (right) optimal solutions.
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fifth zone below NWL representing the dead storage zone, 
designated as the minimum operating level, while the top 
zone above NWL is designated as the maximum permissi
ble water level. The following reservoir operating rules are 
in effect while executing MTO solutions for two consecu
tive time steps:

(1) Under sufficient water supply conditions, reservoirs 
should remain at their NWL.

(2) If reservoir inflow exceeds the capacity of the hydro
power plant while the storage is at NWL, the model will 
allow excess inflow to be stored temporarily up to the 
top of the first zone above NWL while discharging 
outflow through the turbines at their capacities.

(3) Both the first zone above NWL and the top flood con
trol storage zone can be used during floods when reser
voir outflow needs to be kept within the full bank 
capacity of the downstream river reach below 

Figure 16. Konar reservoir stochastic (left) and historical (right) optimal solutions.

Figure 17. Operating zones for Konar (left) and Tenughat (right) reservoirs.

Figure 18. Operating zones for Panchet (left) and Maithon (right) reservoirs.
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Durgapur. To achieve this, the model may draw the 
storage down in the first two time steps, which are 
solved simultaneously to any elevation between NWL 
and the minimum water level, and refill the storage in 
the second time interval up to the maximum water level 
in an effort to keep the downstream flood flows within 
the full bank capacity.

(4) When releases are made for downstream demands, 
Konar and Tenughat reservoirs will be drawn first, to 
meet their respective municipal and irrigation demands 
located upstream of the Panchet Dam. Following that, 
additional releases may be made to maintain storage 
levels at Panchet so as to assist with maximizing gen
erated hydropower.

(5) During dry seasons, water levels in all reservoirs will be 
kept within the zone of the same order (i.e. all reser
voirs will be at the bottom of zone 1 before one of them 
dips into zone 2, and the same rule applies for transi
tion from zone 2 to 3, and 3 to 4), with the drawdown 
starting at Konar and Tenughat first, followed by 
Maithon and Panchet. Only when all reservoirs are at 
the bottom of zone 2 can withdrawal from zone 3 begin, 
first at Konar and Tenughat, followed by Panchet and 
Maithon. Tilaiya reservoir follows the same rules, 
except that its zones are found to be very close to the 
NWL, due to low inflows, which necessitates mainte
nance of high water levels. The best way to utilize 
Tilaiya reservoir was to insure it provide supplies to 
the local domestic and industrial needs, and maintains 
storage levels as close as possible to the NWL.

(6) If all reservoirs are in their second zone below NWL, 
irrigation supply will be cut by 10% of the target 
demand.

(7) If all reservoirs are in the third zone below NWL, 
irrigation supply will be cut by 20% of the target 
demand.

(8) If all reservoirs are in the fourth zone below NWL, 
irrigation supply will be cut by 30% of the target 
demand.

(9) Once the reservoirs are at the minimum level and there 
is no inflow, irrigation supply will be cut to zero.

In real-time applications, the use of MTO solutions for two 
consecutive time steps would be applicable only for the first of 
the two time steps. The forecast for the second time step would 
have an effect on the model solution of the first time step, but 
the model solution (reservoir releases) would be applied in real 
time only for the first time step. At the end of the first time 
step, the operators would run the model again with updated 

storage levels (requiring information from the field) and 
updated inflow forecasts over the next 6 d, which are simulated 
in this study as two consecutive time steps, each having 
a duration of 3 d. The duration of time steps is longer in the 
dry season, but it is also easier for flow forecast, since they are 
no longer based on rainfall–runoff transformation, but rather 
on the base flow hydrograph recession analyses. Also, real-time 
mode application would likely involve daily time steps if the 
forecasts are available on a daily basis. In that case, MTO 
solutions would be derived for 6 d ahead based on the fore
casts, but only the solution for the first of the 6 d would be 
applied to reservoir operation.

If the above operating rules are followed and the reservoir 
releases are based on the MTO solutions for two consecutive 
time steps, the model can achieve very close performance to 
the optimum obtained by using the perfect forecast for the 
entire hydrological year, as shown in Table 2.

The model produces on average 63% more hydropower 
relative to the historical production, and allocates 350 million 
m3 more water to users below Durgapur, while at the same 
time it manages to always keep flows downstream of Durgapur 
below 3300 m3/s. All that is required to achieve this is the use 
of an optimization model and a reliable flow forecast for 6 d 
lead time.

Use of a pattern-matching algorithm to develop 
reservoir operating guidelines

There are numerous attempts in the literature to use artificial 
intelligence algorithms that can learn from the large database 
of optimal solutions and provide an informed guess regarding 
the target reservoir outflow, based on matching the current 
conditions in the field with the conditions of the solutions in 
the database. Having a hypothetical 1000 years of optimal 
solutions can enable basin managers to match the current 
reservoir level in the field for a particular time of the year 
with the database of optimal solutions, and match a smaller 
number of perfect solutions to the current conditions in the 
field in terms of the starting reservoir levels and recent reser
voir inflows (typically over the past 90 d). Recent work by 
Gavahi et al. (2019) applies similar ideas by using the adaptive 
neuro-fuzzy system to set reservoir releases, an algorithm 
which is hard to explain to most reservoir operators. 
Regression approaches have been used in the past in an effort 
to predict storage releases as a function of the starting reservoir 
levels and inflow forecasts, but it is felt that better and more 
stable machine learning algorithms can be devised to aid future 
reservoir operations. The algorithm investigated here involved 
matching the starting reservoir level from the field with the 

Table 2. Summary comparison of mean annual historical and simulated basin operation.

Scenario Tilaiya (GWh) Maithon (GWh) Panchet (GWh) Total water use (106 m3)

Number of yearsa with 
floods (i.e. Q > 3300 m3/s 
below Durgapur Barrage)

Historical Verification 10.49 180.62 205.29 4751 6
Optimal MTO 12.86 300.89 393.23 5222 0
6 d flow forecast 10.18 276.37 358.23 5100 0
Installed power (MW) 4 60 80 -

aThe number of simulated years was 35, hence the historical flood occurrence was 6/35 = 17% of the time. MTO = multiple time step optimization.
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simulated reservoir levels for the same time of the year out of 
1000 optimal solutions, and selecting the solutions that have 
similar inflows in a number of previous simulated time steps. 
In simple terms, this approach can be described as pattern 
matching of the available solutions for 1000 years of stochastic 
inflows with the current reservoir levels in the field and with 
the previous reservoir inflows that have been observed in 
a given period, and it proceeds according to the following 
steps:

(1) Apply the filter to select a subset of solutions with 
reservoir levels that are sufficiently close to the starting 
reservoir level based on the information from the field;

(2) Apply the second filter to the results of the previous 
filter to identify solutions that also have similar inflows 
into the reservoir over a specified previous period (typi
cally 60–90 d). Applying both filters 1 and 2 usually 
brings the number of selected solutions from the initial 
pool of 1000 down to less than 50 that should be 
considered for further statistical analyses.

(3) Analyse the solutions that have passed both filters to 
identify their 50th percentile elevation at the end of the 
current time step. Assume this solution to be the ter
minating solution for the time step.

(4) With the assumed ending reservoir level determined in 
step 3, move to the next time step, and repeat the whole 
process (steps 1, 2 and 3) for the subsequent time steps 
in a simulated year.

The above approach was tested and compared with the optimal 
simulation for various historical years, as shown in Figs 17 and 
18. The results are encouraging for years that have close to 
average hydrological conditions, but they also highlight the 
importance of taking into account the uniqueness of each 
hydrological year and the need to rely on runoff forecast as 
much as possible.

The graphs in Figs 19 and 20 show general agreement with 
water levels predicted based on the current conditions (starting 
storage and recent inflows) and similar solutions found in the 
database of 1000 years of optimal solutions. The solid line 
shows the best solution obtained using the MTO approach 
for a particular historical year, while the range of expected 
solutions based on the proposed algorithm should be between 
the 10th and 90th percentile dashed lines. While the historical 
optimal falls within this range on average 80% of the time, it 
does not capture individual variations that are caused by the 
combinations of runoff and demands on all storage reservoirs. 
Storage drops on Maithon in 2012 faster than predicted from 

Figure 19. Comparison of predicted and solved reservoir levels for Maithon and Panchet in 2012.

Figure 20. Comparison of predicted and solved reservoir levels for Maithon and Panchet in 1983.
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February to April, and similarly in June/July of 1983, due to 
delayed onset of the monsoon season. Similarly, the model fails 
to properly predict the levels of Panchet reservoir, compared to 
the optimal historical simulation. Failure to predict optimal 
water levels with reasonable accuracy all the time using statis
tical inference should not come as a surprise in a complex 
system with multiple reservoirs and varying runoff and water 
demand conditions throughout the basin. Damodar basin has 
a large year-to-year variation in the historical hydrographs and 
it may have multiple peaks within a hydrological year. This 
reinforces the need to use short-term flow forecasting in com
bination with an optimization model that is built on easy-to- 
follow operating rules. Better use of artificial intelligence can 
improve rainfall and runoff forecasts.

Discussion

The proposed MTO method delivers superior results compared 
to the inferential pattern-matching method. However, the data 
requirements for the MTO method are more demanding. In 
addition to the starting reservoir storage, the MTO method 
requires a reliable short-term runoff forecast, and an optimal 
storage sharing policy among reservoirs, which can only be devel
oped from the previous planning study based on the application 
of MTO over long-term hydrological inputs. Long-term historical 
optimization in this project required a model that can optimize 
the entire river basin with variable time step lengths, non-linear 
constraints related to the maximum flows through the turbines 
and net evaporation on reservoirs, and a large-scale solver capable 
of delivering reliable solutions within a reasonable computational 
time. There are 35 years of historical data available, with each year 
having 60 time steps and 105 variables in each time step, which 
amounts to an optimization problem with 220 500 variables. 
There is no alternative to LP when it comes to finding the best 
possible solution to this problem, especially since LP guarantees 
finding the global optimal solution, and it does so within 10 min
utes. Furthermore, there is no heuristic solver that can even begin 
to solve an optimization model of this size while maintaining all 
constraints within the feasible range and guaranteeing optimality. 
Only four LP-based models are capable of calculating MTO 
solutions: HEC-ResPRM (Hydrologic Engineering Centre 2020), 
which is free but only works with a monthly time step; RiverWare 
(Zagona et al. 2001), which requires the model to run time steps 
of equal length, thus making it ineligible for this application, in 
addition to its prohibitive cost; OASIS (Randall et al. 1997), which 
is proprietary and very expensive; and WEB.BM (Ilich 2019) 
which is available for free. These considerations made the choice 
of the latter model obvious.

Potential application of this approach in real-time reservoir 
management is subject to the accuracy of the runoff forecasts, 
which are always uncertain. Another limitation is that the 
current study uses 3-d time steps. An operational model 
should be tested using daily time steps and real-time forecasts, 
and the daily time steps could reduce the length of the required 
forecast period to 5 d subject to additional testing. However, 
daily time steps require hydrological routing, and the required 
input data for hydrological routing were not available at the 
time this study was conducted. The National Hydrology 
Project office has initiated negotiations between the Damodar 

Valley Corporation and the Central Water Commission of 
India to expand this study and link the WEB.BM model to 
the rainfall–runoff forecasting model previously developed by 
the Danish Hydraulic Institute for this basin. The main driving 
force for further development are the WEB.BM model results 
on testing over the past 35 historical years – flood damage 
from six historical floods could have been eliminated, and 
water supply might have been increased by 350 million m3 

per year on average (or by 7.4% compared to the historical 
average), while simultaneously producing 63% more hydro
power per year compared to the historical operation. These 
results are based on the implementation of the zoning concept 
during normal operation combined with the MTO-driven 
reservoir releases, and a reliable runoff forecast for up to 6 d 
ahead combined with MTO-driven reservoir operation in real 
time, which is a small investment considering the potential 
benefits.

Conclusions and recommendations

River basin modelling has so far typically been based on the use 
of user-supplied reservoir rule curves, which were not developed 
in a scientific way. The use of optimization models in combina
tion with stochastic models can be very effective in constructing 
reservoir operating rules in a scientific way. This strategy can be 
combined with short-term runoff forecast and with short-term 
optimization to guide future reservoir releases in real time. 
Possible improvements demonstrated in this study point to 
the potential for significant flood damage reduction along with 
increased generation of hydropower. The recommendations 
resulting from this study can be summarized as follows:

(1) Optimization models should first be used to help 
develop river basin plans, before attempting to apply 
them as seasonal operational tools. A good plan is based 
on comprehensive efforts to develop historical time 
series of the available runoff and provide all other back
ground hydrological and water demand analyses, in 
addition to analysing the optimization model results.

(2) The success of applying optimization tools in real-time 
operation will depend on the improved ability to fore
cast incoming runoff and precipitation over short time 
horizons, and artificial intelligence and machine learn
ing algorithms should be focused on the issue of runoff 
forecasts, rather than on the issue of trying to predict 
the best reservoir management decisions.

(3) Based on the results of this study, the tested pattern- 
matching algorithm may be useful in providing approx
imate guidelines for operators in terms of the typical 
anticipated range of reservoir levels for specific times of 
the year, but it cannot address individual hydrological 
events, which can have significant spatial and temporal 
variation.

(4) Significant improvements to future water management are 
possible with better planning studies based on the use of 
optimization models with MTO capabilities, better fore
casting systems, and the use of MTO optimization models 
in real time to help implement management plans and 
manage the forecasted inflows in the best possible way.
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