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Abstract: A number of computer models for river basin planning and management have been developed by various agencies and used
extensively since the mid-1970s. Most of the early developments have been based on the use of heuristic weight factors to represent
priorities of allocation, and specialized optimization algorithms that were based on the use of network flow algorithms (NFAs). While
these algorithms were at first considerably faster than the standard Simplex solvers, their handling of flow constraints was simplistic,
which eventually led to the use of iterative schemes for handling nonnetwork constraints. This paper critically examines the notion that
iterations applied in combination with NFA are a good vehicle for handling nonnetwork constraints. The failures are demonstrated on

several variants of a simple problem with two reservoirs in series.
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Introduction

Early efforts to use computer models in the water resources field
attempted to capture the essence of rainfall-runoff transformation,
or to model a propagation of flood waves using the known math-
ematical relationships that describe these processes. River basin
management modeling brought in an additional degree of com-
plexity, requiring that the modelers identify various types of water
use and handle different allocation priorities and deficit sharing
policies among them. Depending on the priorities, the available
flow could completely bypass an upstream user and be allocated
to a downstream user, or vice versa. A major departure from pre-
vious modeling of physical processes was the need to either de-
fine a complex set of rules that account for every possible
combination of supply and demand conditions, or to rely on the
model to find the best way to regulate flows in the system, given
the priority of supply assigned to each water use. To this end, a
frequent approach was to use a mathematical optimization solver
to address finding the best basin-wide water allocation. A review
of reservoir operation models for basin planning purposes was
compiled by Wurbs (1993) and subsequently updated by Labadie
(2004). This paper deals with the models based on network flow
algorithms (NFAs). There are a number of such models and they
have been used in many practical applications.

The priority of supply represents the water licensing system in
North America from where most of the early model development
originated. A water licensing system can be represented using a
linear programming (LP) formulation. Hence, early efforts fo-
cused on the search for efficient LP solvers with typical objectives
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of finding an optimal set of network flows. One of the first such
solvers that was initially used in a number of basin planning
models was the out-of-kilter algorithm (Fulkerson 1961). Con-
sider a network consisting of ordered pairs (i,;) of arcs A and a
total of N nodes i,j. The minimum cost flow problem is defined
as the following linear (network flow) program:

minimize Y, iy VijeN (1)
(ij)eA
subject to: 2 X;j— E x;=0 VieN (2)

where ¢;;, ;;, x;;, and u;; are respective cost (or value) factors per
unit of flow, lower bound, flow, and the upper bound on flow
along an arc (i,j). Constraint (2) represents the mass balance at
each node. Expression (1) is a general definition of the minimum
cost flow problem in the operational research literature. In water
resources allocation, the aim is to maximize supply to all users
according to their respective priorities. The minimization problem
given by expression (1) can be converted to a maximization prob-
lem in two ways:

(a) by assigning negative sign to the cost factors ¢;;; or,

(b) by using the goal programming formulation, where the
penalties retain their original values but the objective function is
modified to minimize the sum of all deficit flows (i.e., deviations
from ideal targets defined as the difference between the upper
bounds u;; and flows x;; on each arc). Formulations (a) and (b) are
equivalent, since

min >, c;j(u;; = x;5) < max > ¢y VijeN (4)

(ij)eA (i.j)eA
To apply formulation (b) to water resources networks while re-
taining the objective function form defined in (1), it is necessary
to introduce an additional ideal arc (i,j) for each water use com-
ponent. Such an arc has its upper and lower bounds u;; and [;; set
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to the ideal target value for a given time step and its cost set to
zero. One (or more) arcs with reversed direction (j,i) are used to
enable the reduction of the ideal flow during limited supply con-
ditions, and such reductions are penalized per unit of flow x;;.. Due
to the reversed direction of this arc with respect to the ideal arc,
their combined effect on network solution is equivalent to the
deficit flow u;;-x;;. Yet both the ideal and the reversed arcs main-
tain nonnegative flows and costs. Hence, in such representation,
the objective function retains its original form (1), while the net-
work configuration ensures the goal programming summation de-
fined in (4). A perfect flow solution would then have a total cost
of zero, with flows in all components being at ideal levels while
all reversed arcs contained zero flows, implying no deviations
from targets.

Although the values of the objective functions are different for
formulations (a) and (b) above, the actual network flow solutions
are the same for identical problem definition. More information is
available in publications by Sigvaldason (1976), which described
the acres reservoir simulation program (ARSP). It should also be
noted that some network flow algorithms provide an option to
solve the maximization problem directly, without having to resort
to the change of sign of the cost factors ¢;; or to the introduction
of additional ideal arcs as in the case of the goal programming
formulation.

Early river basin planning models that utilized NFA were
SIMYLD (Evanson and Moseley 1970), ARSP (Sigvaldason
1976), MODSIM3 (Labadie et al. 1986), WASP (Kuczera and
Diment 1988), DWRSIM (Chung et al. 1989), CRAM (Brendecke
1989), KCOM (Andrews et al. 1993), and WRMM (Ilich et al.
2000). Most of these models are still in use, and some early
versions have evolved to more sophisticated models such as
CALSIM (Draper et al. 2004), which uses a mixed integer pro-
gramming (MIP) solver, and it is still maintained and used ac-
tively by the California Department of Water Resources. In some
models, such as the SIMYLD or the WRMM, the original version
of the out-of-kilter algorithm has been replaced with alternative
variants, which were proven to be significantly faster such as
the SUPERK algorithm of Barr et al. (1974) or, as in the case
of the MODSIM model, the Relax4 network flow solver of
Bertsekas and Tseng (1988), which is also used in the REALM
model (Perera and James 2003; Perera et al. 2005). Another
model developed in Australia in addition to REALM is the
WATHNET (Kuczera 1992), which also uses a specialized net-
work flow solver known as the simplex-on-a-graph algorithm,
developed by Kennington and Helgason (1980).

The NFA-based models have been used extensively in river
basin planning studies. Nonnetwork constraints have been
handled by using successive iterations within a time step until a
desired convergence is achieved. This is done by initially guess-
ing the flow bounds u;; on dependent components, solving the
minimum cost flow problem, evaluating the network flow solution
against the assumed bounds, resetting the bounds to new values
based on the previous solution, and reiterating if necessary until
the assumed bounds and the network flow solution were within a
reasonable tolerance limit (Ilich 1993). Although the use of itera-
tions is openly acknowledged in the accompanying documenta-
tion of some of the models such as MODSIM, ARSP, or REALM,
no information is available on its success, the rate of convergence,
or the impact of iterations to the quality of the converged solu-
tions. The iterative process is typically associated with resetting
the reservoir outflow limits, diversion flows at unregulated weirs
where maximum flow diversion is a function of the available
flow in the river, irrigation return flows, or hydropower output or

canals losses. In other words, any instance where the flow in one
component is related to the flow of another component. Such
conditions are generally described as nonnetwork constraints,
since they do not comply with the problem formulation given by
Egs. (1)=(3). Nonnetwork constraints can be linear or nonlinear.
Examples of linear nonnetwork constraints are canal losses ex-
pressed as a linear function of canal flow, or irrigation return
flows expressed as a linear function of consumptive use. Ex-
amples of nonlinear nonnetwork constraints are reservoir out-
flow limits as a dynamic function of storage, or diversion canal
flow limits expressed as a function of the available river flow
that determines the water level at the head gate. These constraints
can be linearized, which leads to some loss of accuracy in the
piecewise linear segmented representation of nonlinear functions.
Although examples in this paper rely on the use of nonlinear
constraints, the principal cause of failure presented here is
not associated with the loss of accuracy due to linearization,
but rather with the inability to include nonnetwork constraints
directly into the search process. This view can be confirmed if
one assumes that the reservoir outflow is a linear function of
storage, and that the shape of the storage reservoir is cylindrical,
resulting in constant rate of head change for the average net out-
flow over a time step. Even with these assumptions, the use of
NFA with iterations on sample problems presented in this paper
would still fail to deliver the best possible solutions by a wide
margin.

When iterations are used, the resulting solution from one itera-
tive call of the solver becomes the starting point for the next
iteration. This paper demonstrates that there is no guarantee that
this process results in a convergence to the global optimum even
on simple systems with two or more sequential reservoirs.

Attempts to include nonnetwork linear constraints directly
into the LP formulation have been made using specialized
solvers such as the EMNET (Sun et al. 1995) or using general LP
solvers as in the case of the RIVERWARE (Zagona et al. 2001),
HEC-FCLP (Needham et al. 2000), or OASIS (Dean et al. 1998).
These models are capable of optimizing allocation over single or
multiple time steps. There seems to be no universally accepted
methodology on how to utilize multiple time step solutions for the
development of practical short-term operating rules, since mul-
tiple time step solutions require the perfect forecast of hydrologic
inputs over long periods that are unavailable in real time. Simul-
taneous multiple time step solutions can also be obtained with
HEC-PRM (Lund 1996), but the nonlinear constraints can only be
handled using iterative schemes, as this model still relies on an
NFA algorithm.

Typical modeling time steps used for planning purposes are
weekly or monthly, since the time step length has to be suffi-
ciently longer than the time of travel through the entire region of
the river basin under consideration. Test problems in this paper
are presented for a single weekly time step. Some of the tests
demonstrate that shortening the time step does not resolve the
issues raised in the paper.

Early versions of network flow models dating back to the
1970s did not originally include iterative mechanisms for model-
ing nonnetwork constraints. This is no longer the case, as most
NFA-based models in use nowadays employ some form of itera-
tive scheme, for example to account for the hydraulic dependence
between the maximum reservoir outflow and the available stor-
age, or to handle other dynamic constraints where flows in one
component are dependant on flows in other components in the
network. One prominent example of nonnetwork constraints are
reservoir outflow limits, which are governed by the level of stor-

JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT © ASCE / JANUARY/FEBRUARY 2009 / 49

Downloaded 26 Dec 2008 to 136.159.235.223. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



LEGEND:
RESERVOIR

......... -» RETURN FLOW
— DIVERSION

IRRIGATION

200

401

400 402

O—
IS
o
@
B
[
5

405

v

Fig. 1. Problem 1 modeling schematic

age (i.e., another variable in the model), and the capacity of the
outlet structure (either a weir or an orifice). Reservoir elevation
determines the maximum possible outflow at each point during
the given time period. Yet the elevation also changes during the
time period as a result of the overall mass balance of inflows and
outflows. Further, many reservoirs have more than one outlet
structure, which can compound the problem when they are oper-
ated simultaneously. The average outflow capacity over a time
step is the integrated average from the beginning to the end of
the calculation time step. For example, if Q(V) represents the
maximum reservoir outflow Q as a function of storage V at any
given moment (defined by a weir or an orifice equation), then
the maximum possible outflow Q.. over a time step ¢ can be
expressed as

1
Te_ Ti

Te
Omax = J o[ V(1)]dt (5)
T;

where T; and T,=starting and ending times for a given time in-
terval. Only Q(V) at the initial time T is known, since the storage
may be reduced or increased in a given time step, which is to be
determined as part of finding the overall solution. When using a
network flow solver, the model must “guess” the final elevation
for a time step in order to numerically integrate the average out-
flow capacity given by Eq. (5) and, thus, estimate the upper
bound on reservoir outflow. Hence, the need to resort to iterative
calls of the network flow solver, such that the guessed value is
improved from iteration to iteration until it is sufficiently close
to the integrated value. Once Q,,, in Eq. (5) is set, it defines
the upper bound on the outflow for a single iteration. The model

Table 1. Storage and Outflow Capacities for Reservoirs 1 and 2

Volume Elevation Outflow
(1,000 m?) (m) (m3/s)
0.00 1,653.00 0
772.03 1,656.00 0
1,960.51 1,659.00 0
2,400.00 1,660.00 0
2,900.00 1,661.03 1.8742
3,400.00 1,662.01 3.2872
3,900.00 1,662.92 4.2828
4,400.00 1,663.76 49314
4,900.00 1,664.52 5.2931
5,400.00 1,665.20 5.4391

Table 2. Inflows for Reservoirs 1 and 2

Inflow from runoff

Location (m3/s)
Reservoir 1 6.0
Reservoir 2 1.5

may actually derive outflows that are less than Q,,, since re-
servoir releases are driven by downstream demands, which are
usually less than the maximum possible release (Q,,.,) defined by
Eq. (5).

In LP formulation, all water movements are expressed in the
same units, which are typically either units of flow or volume.
Which of those units are used is irrelevant, since the physical
nature of the problem persists in the same way. An empty reser-
voir cannot provide desired gravitational water releases until
some storage is first refilled to provide sufficient head for such
releases. The storage versus outflow curve can be given with both
storage and outflow in the units of volume or in the units of flow
for a given time step length. Some models such as REALM allo-
cate water using the units of volume also rely on iterative conver-
gence schemes in the solution process.

Test Problems

The schematic for test problems is shown in Fig. 1. It contains
two reservoirs, numbered 1 and 2, and two water use components
(e.g., irrigation) numbered 200 and 201. Channels 400 through
405 define network configuration. Several test runs are conducted
on the schematic in Fig. 1 and each test run is only conducted for
a single time step with a duration of one week. Input data for this
test run are given in Tables 1-5 including the storage and outflow
capacities (Table 1), inflows (Table 2), initial and ideal storage
levels (Table 3), water demands (Table 4), and priorities of allo-
cation (Table 5). Live storage on both reservoirs begins at the
elevation of 1,660 m. In this test no restrictions on reservoir out-
flows are assumed, and a common sense policy of sequential res-
ervoir operation (Lund and Guzman 1999) is adopted with the
downstream reservoir having a lower priority than its upstream
counterpart. Hence, storage in reservoir 2 has the lowest priority,
followed by reservoir 1, water use (irrigation) component 200,
irrigation component 201, and finally channel 405 with the high-
est priority. Low priority on storage helps define the value of
storage. Without it, the model would have no incentive to refill
storage when surplus runoff is available. In this test run, the val-
ues representing those priorities are 1, 2, 10, 100, and 200 for
reservoirs 2, 1, irrigation blocks 200 and 201, and channel 405,
respectively. Hence, the cost vector ¢;; given in expression (1)
contains values (1, 2, 10, 100, and 200) for components 2, 1, 200,
201, and 405, respectively. If the optimization problem is solved
as minimization, the sign of the values of the cost vector will be
reversed to negative, and the solution values X;j would be identi-
cal as if the same problem was solved as maximization, as is well
established in mathematical programming theory. For purposes of

Table 3. Initial and Full Supply Level for Reservoirs 1 and 2

Initial Full

(m) (m)
Reservoir 1 1,661.0 1,665.2
Reservoir 2 1,660.5 1,665.2
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Table 4. Water Demands for Test Problem 1

Table 6. Solution to Test Problem 1—Unlimited Outflow Capacity

Water demands Component Component NFA
Component (m3/s) type number solution Units
Block 200 3.0 Reservoir 1 1,662.066 m
Block 201 3.0 Reservoir 2 1,660.000 m
Channel 405 1.0 Water use 200 3.000 m3/s
Water use 201 3.000 m3/s
Channel 400 5.099 m3/s
further discussion, assume the objective function expressed in Channel 401 3.000 m3/s
maximization form, such that the objective function for all test Channel 402 2.099 m/s
problems presented here can be written as Channel 403 2,500 m/s
max{l - X, +2 - X, + 10 - X,00+ 100 - X,0, + 200 - X,05} (6) ~ Channel 404 3.000 m*/s
Channel 405 1.000 m3/s
where X; and X, represent storage levels at the end of the week; Objective function 545.306

Xo00 and X, represent water supply to irrigation blocks achieved
over the simulated week; and X5 represents average flow in
channel 405 for a week. The highest value factor in the system is
given to channel 405, which refers to the biological minimum
target flow of 1 m3/s, as can be seen from the water demands
section of Table 4. Hence, the upper bound on the flow in channel
405 that is subjected to value factor is 1 m3/s. The same goes
for irrigation blocks 200 and 201, where water requirements are
capped at 3 m3/s of average weekly flow for each block. There-
fore, the last three terms in expression (6) related to irrigation
blocks and the in-stream flow needs provide the most significant
input into the final value of the maximization function. If
both reservoirs are empty at the end of a given time interval while
all water demands are supplied in full, the objective function
value is 530 (=10-3+100-3+200-1). The ending storage
expressed by the first two terms adds little to the final value of
the objective function, but the difference in values between the
two reservoirs helps define which of the two reservoirs should
release storage first when releases for block 201 or channel 405
are required.

Test Problem 1

Table 6 provides the NFA model solution for Test Problem 1,
which assumes no restrictions on reservoir outflow. In this case,
the model fully meets all demands. Any balance of available in-
flow is kept in reservoir 1, since it has a higher priority compared
to reservoir 2. Reservoir 2 is emptied, i.e., its elevation is lowered
to the bottom of live storage at 1,660 m at the end of the simu-
lated weekly time step. This solution is correct and it can be
obtained either by an NFA-based model or a full LP imple-
mentation. To calculate the value of the objective function in
maximization form for this test run, convert the ending storage
volumes to the units of flow for a time interval to calculate the
first two terms in expression (6). For example, for reservoir 2, the
ending elevation is 1,660 m, which corresponds to storage of

Table 5. Allocation Priorities for Test Problem 1

Rank Value
Component priority factor
Reservoir 1 5 1
Reservoir 2 4 2
Demand 200 3 10
Demand 201 2 100
Channel 405 1 200

2.4 million m>. For the NFA model formulation, all variables (in-
cluding storage) are converted to the same units, which are either
average flow (m’/s) or volume (m®) per time step. In these
examples, the model solved using the units of flow, hence,
the ending storage for reservoir 2 is 3.968 m?/s, which can
be verified by dividing 2.4 million m*® by the length of one
week expressed in seconds. The storage of reservoir 1 at the
end of time interval is obtained in the same manner to give
5.669 m3/s. The final value of the objective function is 545.306
(=2-5.669+1-3.968+530), calculated using expression (6). As
the title of Table 6 implies, this solution assumes no restrictions
on outflow capacity as a function of storage, and as such it can be
considered as the upper bound on solutions where restrictions on
storage outflow are imposed.

Test Problem 2

Test Problem 2 is identical to Test Problem 1 in all aspects ex-
cept that flow restrictions are imposed on channels 400 and 403
according to the outflow versus elevation relationship given in
Table 1. The same curve is used for both channels 400 and 403 to
simplify the setup. The aim is to include limitations on maximum
outflows from storage reservoirs as a function of the available
storage. The output is shown in Table 7 for all four iterations
required to converge to the final solution and the value of the
objective function for each intermediate solution.

The paradox about the solution in Table 7 is that, judging from
the standpoint of higher priority of supply to block 201 compared
to block 200, the solution given in the first iteration looks better
than the converged solution in the final (fourth) iteration! This can
be verified by observing that block 201, which has 10 times
higher priority than block 200, is allocated 1.41 m?/s in iteration
1 while it ends up with 0.955 m?®/s in the final iteration. In the
very first iteration, the upper bound of channel 403 is set to
0.91 m3/s based on the assumption that reservoir 2 will have no
significant change of its initial elevation of 1,660.5 over the week.
This assumption is evaluated after obtaining the solution from
iteration 1. At the end of iteration 1, the model evaluates the
maximum outflow capacity for reservoir 2 from its elevation at
the beginning of the week (1,660.5 m) to its week ending eleva-
tion obtained from the solution in iteration 1 (1,660.0 m), using
numerical integration of expression (5) over small time incre-
ments resulting in integrated outflow capacity of 0.455 m?/s. The
outflow capacity estimate for iteration 2 is then fixed to
0.682 m?/s, half-way between the initial 0.91 m?3/s and the inte-
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Table 7. Solution to Test Problem 2—Limited Outflow Capacity, Normal Costs

Component Component NFA NFA NFA NFA Full 1p

type number iteration 1 iteration 2 iteration 3 iteration 4 solution Units
Reservoir 1 1,665.226 1,663.957 1,664.166 1,664.166 1,663.850 m
Reservoir 2 1,660.000 1,660.000 1,660.000 1,660.000 1,662.040 m
Water use 200 1.311 3.000 3.000 3.000 0.000 m3/s
Water use 201 1.410 1.182 0.955 0.955 2.616 m3/s
Channel 400 1.820 3.281 3.054 3.054 3.397 m3/s
Channel 401 1.311 3.000 3.000 3.000 0.000 m3/s
Channel 402 0.508 0.281 0.054 0.054 3.397 m3/s
Channel 403 0.910 0.682 0.455 0.455 2.116 m3/s
Channel 404 1.410 1.182 0.955 0.955 2.616 m3/s
Channel 405 1.000 1.000 1.000 1.000 1.000 m3/s
Objective function 375.998 367.148 344.902 344.902 481.750

grated capacity of 0.455 m?/s. With a reduced capacity for sup-
plying block 201 in iteration 2, more water is available for block
200, which has a higher priority than storage in reservoir 2.
Hence, in iteration 2 and all subsequent iterations, block 200 gets
its full demand of 3 m?3/s, while block 201, which has the highest
priority, settles for 0.955 m3/s, less than a third of its full de-
mand. The problem is that the NFA cannot “see” the need to keep
storage at reservoir 2 sufficiently high to provide desired supply
to block 201. All that the NFA can take into account are the fixed
upper bounds on channel 403 from iteration to iteration and the
priority factors, which drive the allocation in each iterative solu-
tion. In addition to the results of all four iterations, Table 7 also
contains a column with the correct solution obtained with the full
LP application. This solution better meets the objectives than the
converged NFA solution shown in the column marked “Iteration
4.” as it fully bypasses irrigation block 200 and maximizes water
supply to block 201. To obtain the accurate solution, linearized
relationships between storage and outflow must be included as
additional constraints. Since these constraints imply that the flow
bound is a function of other variables (i.e., storage) elsewhere in
the network, they cannot be included in the network flow problem
constraints formulation given by expressions (2) and (3). Objec-
tive function values are given in the bottom row of Table 7.

Test Problem 3

Can shorter time steps improve the solution in Test Problem 2?
Table 8 shows converged solutions of Test Problem 3, which con-

Table 8. Daily Time Step Solutions to Test Problem 3

sists of seven sequential daily time steps instead of a single
weekly time step. All other input data are the same as for Test
Problem 2, with the exception of the time step length. The ending
reservoir elevation for each daily solution was used as a starting
elevation for the subsequent day. Hence, the ending elevation at
the seventh day is equivalent to the ending weekly elevation for a
weekly time step. It can be noticed that, except for the first day,
the model allocates 3 m?/s to block 200 in all six subsequent
days, hence, the same process takes place as in the weekly solu-
tion, with the same consequences. Outflow of 3 m?/s to block
200 cannot be achieved in the first day since reservoir 1 does not
fill sufficiently to achieve the necessary head that could enable
average daily outflow of 3 m®/s. However, when flows for all
seven days are averaged, the final solution is actually worse than
the one obtained in the weekly time step. To confirm this, note
that the highest priority component (block 201) gets 0.955 m?/s
in the weekly time step solution, while the average of the seven
daily time step solutions results in 0.860 m?/s. Consequently, re-
fining the length of the time step has no positive impacts on the
quality of the final solution.

Test Problem 4

An attempt to rectify the situation described in Test Problems 2
and 3 may be to reverse the values on reservoirs. For example,
if reservoir 2 is assigned a higher value factor than reservoir 1,
then reservoir 1 will be emptied first, leaving more water in
storage for reservoir 2, thus, automatically increasing its outflow

Component Component Weekly

type number Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 equivalent Units
Reservoir 1 1,661.631 1,662.129 1,662.601 1,663.061 1,663.497 1,663.916 1,664.310 1,664.310 m
Reservoir 2 1,660.361 1,660.260 1,660.188 1,660.135 1,660.098 1,660.070 1,660.051 1,660.051 m
Water use 200 2.285 3.000 3.000 3.000 3.000 3.000 3.000 2.898 m3/s
Water use 201 1.283 1.065 0.907 0.794 0.712 0.653 0.609 0.860 m3/s
Channel 400 2.285 3.000 3.000 3.000 3.000 3.000 3.000 2.898 m3/s
Channel 401 2.285 3.000 3.000 3.000 3.000 3.000 3.000 2.898 m’/s
Channel 402 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 m3/s
Channel 403 0.783 0.565 0.407 0.294 0.212 0.153 0.109 0.360 m3/s
Channel 404 1.283 1.065 0.907 0.794 0.712 0.653 0.609 0.860 m3/s
Channel 405 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 m’/s
Objective function 366.012 362.137 337.137 326.651 319.280 314.214 310.656 334.777
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Table 9. Solution to Test Problem 4—Limited Outflow Capacity, Reversed Reservoir Costs

Component Component Full 1p

type number Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 solution Units
Reservoir 1 1,665.226 1,663.954 1,663.677 1,663.663 1,663.663 1,663.663 1,663.850 m
Reservoir 2 1,660.000 1,660.005 1,660.641 1,660.462 1,660.307 1,660.314 1,662.040 m
Water use 200 1.311 3.000 3.000 3.000 3.000 3.000 0.000 m3/s
Water use 201 1.410 1.182 0.964 1.121 1.246 1.240 2.616 m3/s
Channel 400 1.820 3.285 3.577 3.591 3.591 3.591 3.397 m’/s
Channel 401 1.311 3.000 3.000 3.000 3.000 3.000 0.000 m3/s
Channel 402 0.508 0.285 0.577 0.591 0.591 0.591 3.397 m3/s
Channel 403 0.910 0.682 0.464 0.621 0.746 0.740 2.116 m3/s
Channel 404 1.410 1.182 0.964 1.121 1.246 1.240 2.616 m3/s
Channel 405 1.000 1.000 1.000 1.000 1.000 1.000 1.000 m3/s
Objective function 375.998 367.145 345.252 360.778 373.154 372.560 481.995

capacity. Test Problem 4 simulation run is conducted with re-
versed value factors on reservoirs 1 and 2 (i.e., values of 1 for
upstream and 2 for downstream reservoirs, respectively). The so-
lutions for all iterations as well as for a full blown LP application
are in Table 9.

This time the solution is slightly better, since 1.24 m3/s is
allocated to the highest priority block 201, as opposed to
0.955 m?/s in Test Problem 2. However, not only did this change
in priority of storage and release violate a sensible rule for oper-
ating reservoirs in sequence by releasing first form downstream
storage, but the resulting solution is still inferior to the correct
solution obtained from the full LP application that remained un-
changed from the previous Test Problem 2, implying that the best
possible solution is not sensitive to the reversal of reservoir val-
ues. This is because the value factor associated with water supply
to block 201 is significantly higher than any of the reservoir value
factors. The full LP solver can successfully maximize the objec-
tive function by allocating nothing to block 200. In the NFA
solution, allocation to block 200 still persists, since block 200 has
a higher value factor than reservoir 1.

Test Problem 5

Can a shorter time step improve the solution of Test Problem 47?
Table 10 shows seven subsequent daily solutions for Test Problem
4, where the ending reservoir elevations for a single day are used
as starting elevations for the subsequent day. As seen in Table 10,
the average allocation to block 201 obtained from seven daily

Table 10. Daily Time Step Solutions to Test Problem 5

solutions is 1.248 m?3/s, while the allocation to block 201 for a
single weekly time step in Table 9 shows 1.240 m?/s. The differ-
ence is practically negligible. The principal cause of failure to
find the optimal solution remains the same regardless of the
length of the time step.

Test Problem 6

If the value factor on reservoir 2 is set to 20 and, thus, higher than
block 200, which has a value of 10, the solution would closely
match the one obtained by the full LP solver. The allocation to
block 201 would be 2.75 m?/s instead of 2.62 m?/s. This is due
to slightly higher accuracy of integration scheme employed in the
NFA model compared to the full LP formulation, since the full LP
formulation must include linearization of the integration scheme
directly in the constraint matrix. However, this value setup would
require that reservoir 2 be always kept full, even in cases when
that is not required. That would defeat the purpose of using math-
ematical programming for finding optimal demand-driven alloca-
tion. Consider for example a situation in Test Problem 6 where
inflow downstream of reservoir 2 is set to 4 m?/s (or any greater
value) and the value factor of reservoir 2 is set to 20. In this case,
storage release of reservoir 2 is not required for block 201 and
channel 405 at all, and the available storage in reservoir 1 could
be used to meet the demand at block 200. However, with the
second highest value factor on reservoir 2, the model forces re-
leases from reservoir 1 to refill storage at reservoir 2, resulting in
no supply to block 200 at all. The solution of the NFA model for

Component Component Weekly

type number Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 equivalent Units
Reservoir 1 1,661.631 1,662.115 1,662.491 1,662.808 1,663.065 1,663.286 1,663.483 1,663.483 m
Reservoir 2 1,660.361 1,660.274 1,660.291 1,660.362 1,660.458 1,660.557 1,660.653 1,660.653 m
Water use 200 2.285 3.000 3.000 3.000 3.000 3.000 3.000 2.898 m3/s
Water use 201 1.283 1.074 1.015 1.088 1.253 1.423 1.601 1.248 m’/s
Channel 400 2.285 3.090 3.608 3.987 4.289 4.480 4.641 3.769 m3/s
Channel 401 2.285 3.000 3.000 3.000 3.000 3.000 3.000 2.898 m’/s
Channel 402 0.000 0.090 0.608 0.987 1.289 1.480 1.641 0.871 m3/s
Channel 403 0.783 0.574 0.515 0.588 0.753 0.923 1.101 0.748 m3/s
Channel 404 1.283 1.074 1.015 1.088 1.253 1.423 1.601 1.248 m3/s
Channel 405 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 m’/s
Objective function 366.012 353.023 347.819 355.752 372.818 390.333 408.598 372.233
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Table 11. Solution to Test Problem 6—Limited Outflow Capacity, Reservoir 2 Value=20

Component Component

type number Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Units
Reservoir 1 1,665.226 1,663.954 1,663.677 1,663.663 1,663.663 m
Reservoir 2 1,662.635 1,664.109 1,664.378 1,664.390 1,664.390 m
Water use 200 0.000 0.000 0.000 0.000 0.000 m3/s
Water use 201 3.000 3.000 3.000 3.000 3.000 m3/s
Channel 400 1.820 3.285 3.577 3.591 3.591 m’/s
Channel 401 0.000 0.000 0.000 0.000 0.000 m3/s
Channel 402 1.820 3.285 3.577 3.591 3.591 m3/s
Channel 403 0.000 0.000 0.000 0.000 0.000 m3/s
Channel 404 3.000 3.000 3.000 3.000 3.000 m3/s
Channel 405 1.000 1.000 1.000 1.000 1.000 m3/s

this case is shown in Table 11. It is reasonable to assume that
reservoir 1 was not built to always bypass supply to irrigation
block 200, especially when there is no apparent need for it. Con-
sequently, this value system is not a general solution here, since it
tends to introduce its own problems for a range of possible hy-
drologic conditions.

To summarize, the value system used in Test Problem 1 with-
out flow restrictions works well both with the NFA and with the
full LP application, where the full LP application includes the
piecewise segmentation of the outflow versus storage curve that
cannot be included in the NFA problem formulation defined by
Eqgs. (1)-(3). However, when outflow restrictions are introduced,
the full LP application still works with the same value system
used for Test Problem 1, while the iterative scheme within the
NFA fails to deliver sensible solutions for a number of tests dem-
onstrated in this paper. A cost factor-based priority system should
describe an operating policy that should be the same for all simu-
lated time intervals and choice of flow constraints. It should not
depend on the hydrologic conditions. That is clearly not the case
in the test problems presented here.

Conclusions and Recommendations

This paper examines the limitations of network flow algorithms to
address nonnetwork constraints using an iterative approach. Al-
though the paper by no means includes all instances where an
iterative scheme may fail, it can be generally concluded that any
flow path restrictions that are updated through iterative calls of
the NFA solver may fail to deliver reasonable solutions. The limi-
tations are demonstrated using numerical examples with sufficient
input data to allow independent verification. The numerical ex-
amples presented in this paper include a simple system with two
reservoirs in series, which is an elementary configuration com-
mon to most water resources systems. Another possible failure of
the NFA-based iterative schemes is an example of a single reser-
voir with multiple outflows, where flow limits in some of those
outflows are governed by the outflow versus elevation curve. It
has been documented that such configuration can cause failure for
both the NFA solver and in some instances for full blown LP
solvers (Ilich 2008). It is believed that most water resources sys-
tems contain reservoirs in sequence, reservoirs with multiple out-
flows, or a combination of both. This paper questions the fitness
of the final solution to which NFA models may converge for two
or more reservoirs in series, while the other referenced publica-
tion (Ilich 2008) examines the use of NFA solvers on reservoirs
with multiple outflows. Together, the two publications question

the wisdom of using iterative schemes used with NFA models to
handle nonnetwork flow constraints. This issue deserves attention
since many NFA models with built-in iterative schemes are still
actively in use by various water resources practitioners around the
world.
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