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[1] Numerous computer models for river basin planning and management have been
developed and used extensively since the mid-1970s. Early developments have relied on
the use of network flow algorithms (NFA), due mainly to higher execution speed than the
standard Simplex solvers. However, subsequent efforts to include proper modeling of
hydraulic and hydrologic constraints introduced iterative schemes into the NFA-based
models, which diminished the initial advantages in execution speed and which also caused
concerns over the accuracy of the convergence schemes. Hence full-blown commercial
linear programming (LP) solvers were introduced as a replacement to the iterative solution
strategy of the NFA approach. This paper demonstrates one possible failure to solve a
simple allocation problem using the NFA-based model and shows how this problem can
be solved using the standard LP approach. It then identifies cases when even a full-blown
LP approach cannot properly model two critical aspects of river basin management, one
related to reservoirs with multiple outflows and the other one related to modeling of
hydrologic channel routing. For NFA-based models the failures are the result of the
inability to include relationships between flows on different model components directly
into the search process. For the models based on LP solvers, the failures are caused by
the fact that integrated reservoir outflow capacity between the starting and the ending
storage levels is assumed over the entire length of the assumed time step, while the
actual outflow can only take place during the portion of the time step when the storage
level is above the invert of the outlet structure.
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1. Introduction

[2] River basin management models introduced the need
to model different allocation priorities and deficit-sharing
policies among various water users. In such models the
available river flows could completely bypass the upstream
users and be allocated to a downstream user, or the other
way around. These models require a complex set of rules
that account for every possible combination of supply and
demand conditions (hence the term ‘‘rule based’’ models),
or a built-in optimization solver that treats the allocation
problem as a mathematical program. Initial review of
reservoir operation models for basin planning purposes
was compiled by Yeh [1985] and later updated by Wurbs
[1993] and Labadie [2004]. The primary focus of this paper
is a large group of deterministic linear programming (LP)-
based optimization models that found widespread applica-
tion in practice.
[3] Some modeling standards do exist in the water resour-

ces sector nowadays. For example, the use of HEC-RAS for
river hydraulics analyses has become part of standard curric-

ula at many engineering schools in North America and
overseas. However, in the area of basin allocation modeling,
there is neither a universally accepted model nor a general
agreement on the minimum mandatory technical specifica-
tions for it in terms of its capabilities, solution techniques,
limitations, and a number of benchmark test problems that
would allow commercial models to be verified and compared
by potential users. This is not so in the operations research
field,where any vendor offering a newLP solver to themarket
is greeted by over 30 tough and well-established benchmark
test problems with known solutions that the new vendor
would be expected to match. This prevents the vendors of
LP solvers to market their products without first publicly
demonstrating their capabilities. In spite of numerous papers
on optimization in river basin planning andwater resources in
general, established and widely acceptable benchmark prob-
lems are still nonexistent. Once the standard set of mandatory
constraints are established and generally agreed upon, testing
of other vendors’ solutions could be made transparent to
anyone.
[4] The priority of supply was initially aimed at repre-

senting the water licensing system still in use in North
America from where most of the early model development
originates. Water licensing systems can be represented by an
LP formulation. Hence the early efforts focused on imple-
mentation of efficient LP solvers with typical objectives of
finding the minimum cost flow in a network. One such
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specialized solver was the Out-of-Kilter algorithm [Fulkerson,
1961]. Consider a network consisting of ordered pairs (i, j)
of arcs A and a total of N nodes i, j. The minimum cost flow
problem is defined as the following linear program:

Minimize
P
i; jð Þ2A

cijxij 8i; j 2 N ð1Þ

subject to

X
i

xij �
X
i

xji ¼ 0 8j 2 N ð2Þ

0 � lij � xij � uij 8 i; jð Þ 2 A; ð3Þ

where cij, lij, xij, and uij are the cost per unit of flow, lower
bound, flow, and the upper bound on flow along an arc (i, j),
respectively, while constraint (2) represents the mass
balance at each node. Early river basin planning models
which utilized the Out-of-Kilter algorithm were define
SIMYLD [Evenson and Moseley, 1970], ARSP [Sigvaldason,
1976], MODSIM3 [Labadie et al., 1986], WASP [Kuczera
and Diment, 1988], DWRSIM [Chung et al., 1989], CRAM
[Brendecke, 1989], KCOM [Andrews et al., 1993], and
WRMM [Ilich et al., 2000b]. Most of these models are still in
use, and some early versions have evolved to more
sophisticated phases, e.g., DWRSIM has now been replaced
with CALSIM [Draper et al., 2004], which uses a mixed-
integer program (MIP) solver, and it is still maintained and
used actively by the California Department of Water
Resources. In some models, such as the SIMYLD or the
WRMM, the original version of the Out-of-Kilter algorithm
has been replaced with alternative variants which were
proven to be significantly faster such as the SUPERK
algorithm of Barr et al. [1974] or, as in the case of the
MODSIM model, the Relax4 network flow solver of
Bertsekas and Tseng [1988]. These models have been used
extensively in river basin planning studies. Nonlinear
constraints have been handled by using successive iterations
within a time step until a desired convergence is achieved.
This is done by initially guessing the flow bounds uij, solving
the minimum cost flow problem, evaluating the network flow
solution against the assumed bounds, resetting the bounds to
new values based on the previous solution, and reiterating if
necessary until the assumed bounds and the network flow
solution were within a reasonable tolerance limit. Although
the use of iterations is openly acknowledged in the
accompanying documentation of some of the models such as
MODSIM, ARSP, or REALM [Department of Sustainability
and Environment, 2006], no information is available on the
success of convergence or the impact of iterations on the
quality of the converged solutions. The iterative process is
typically associated with resetting the reservoir outflow
limits, diversion flows at unregulated weirs where maximum
flow diversion is a function of the available flow in the river,
irrigation return flows, hydropower output or canals losses; in
general, in situations where flow in one component depends
on the flow in another component. The resulting solution
from one iterative call of the solver becomes the starting
point for the next iteration. As demonstrated on a simple test
problem in this paper, there is no guarantee that this iterative

process must converge to the optimal solution that can be
obtained using a full LP formulation with piecewise
linearization of non-network constraints, since such problem
formulation does not require iterations.
[5] To avoid iterations, non-network and segmented non-

linear constraints were included directly into the MIP
formulation in models such as CALSIM, RIVERWARE
[Zagona et al., 2001], HEC-FCLP [Needham et al., 2000],
or OASIS [Randall et al., 1997]. Some of these models are
also capable of optimizing allocation over single or multiple
time steps, although there is no universally accepted meth-
odology on how to utilize multiple time step solutions for
the development of practical short-term operating rules.
Development of such methodology is outside of the scope
of this paper.
[6] Results of the models listed above have been used

mainly in river basin planning studies, and they were
dependent on the nature of the historic hydrologic time
series that was typically used as input. The fact that the
historic series will never repeat itself in the same fashion,
along with doubts that the historic series is a legitimate
representative of the current and future conditions, introdu-
ces the need to consider uncertainty of reservoir inflows into
modeling. Various ways have been proposed for this, but
one of the most promising is implicit stochastic optimiza-
tion, where stochastic hydrologic time series are first
produced as an alternative to the historic series and used
as hydrologic inputs [Koutsoyiannis and Economou, 2003].
Also, innovations in algorithmic developments that may
enable generation of stochastic series with shorter time step
and simultaneously preserve multiple autocorrelations and
cross correlations of arbitrary time lag n have also emerged
recently [Ilich and Despotovic, 2007]. Whether historic or
stochastic series are used as hydrologic input is transparent
to the optimization process, which treats either historic or
synthetic series as known inputs. A recognized difficulty is
to relate the results of planning models to the real-time
operation where inflows are not known in advance.
Nalbantis and Koutsoyiannis [1997] favor development of
parametric rules as a simple guideline that operators can
understand and follow, such as, for example, the target
elevation that should be reached for each reservoir at the
end of a given time step. Another way to tackle the issue of
hydrologic uncertainties may be to develop short-term
operationalmodel based on the following concept: (1)Develop
and use stochastic hydrologic series as hydrologic input;
(2) use stochastic hydrologic series obtained in point 1 to
conduct basin-wide multiple time step optimization in order
to form a database of ‘‘perfect’’ solutions of reservoir
releases and diversion flows; (3) use pattern matching
techniques based on a range of options, starting from the
simplest based on multiple regression in combination with
reservoir operating zones [Ilich et al., 2000a] to the latest
developments in artificial intelligence such as the artificial
neural networks or support vector machines that can
‘‘learn’’ from the database of optimal solutions developed
in step 2; and (4) verify the proposed short-term operational
model by applying it using a discrete set of short time steps
with historic data. Note that the potential benefits of the
short-term models developed in this fashion can be assessed
by comparing the model output for the recent historic series
of inflows with the historic operation of the system, and
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comment on the added benefits arising from the use of the
model. Again, in this approach, step 2 involves application
of deterministic optimization models considered in this
paper. There may be other strategies for generating short-
term reservoir operating rules. Which one will be the most
successful is subject to future research and practice. How-
ever, all this is outside of the scope of this paper. This paper
deals with difficulties within the realm of the deterministic
LP framework, which has so far been the most frequently
used approach in practice (the majority of the referenced
models used by various agencies are LP-based). This raises
the importance of the ability to solve deterministic optimi-
zation problems properly.
[7] Test Problem 1 demonstrates a failure to find accurate

solutions on sample problems using iterative calls to net-
work flow solvers. Modified Test Problem 1 includes
discussion on how iterations can be avoided by adding
segmented linearized reservoir outflow constrained to fit a
more general formulation within a wider LP context, as well
as a case where even this formulation fails. Finally, Test
Problem 2 discusses implications of including hydrologic
channel routing as a constraint into a linear program,
followed by conclusions and recommendations. Appendix A
includes technical discussion on the necessity to use mixed
integer programming, backed by a numerical example.

2. Test Problem 1

[8] This test problem demonstrates breakdown of an
iterative scheme on modeling a reservoir with two distinct
outflow structures. Reservoir outflows are limited by the
capacity of the outlet structure (a weir or an orifice). They
are a function of the average available storage over a given
time step and the geometry of the structure that determines
the flow area. Reservoir elevation determines the maximum
possible outflow at each point during a given time period.
However, reservoir elevation also changes during the time
period as a result of the overall mass balance of inflows and
outflows. Also, many reservoirs have more than one outlet
structure which introduces additional complexity during
simultaneous operation. The average outflow capacity over
a time step is the integrated average from the beginning to
the end of the calculation time step. An NFA-based model
must ‘‘guess’’ the final elevation for a time step in order to
numerically integrate the average outflow capacity and thus
estimate the upper bound on reservoir outflow; hence the
need to resort to iterative calls of the network flow solver,
such that the guessed value is improved from iteration to
iteration until it is sufficiently close to the calculated value.
Iterative procedures may fail to converge to a sensible

solution in complex systems with multiple reservoirs and
multiple outlet structures.
[9] The sample test run for an NFA-based models is

presented as an introduction to its related problem for a full
LP formulation presented in this paper. The volume versus
elevation and the outflow versus elevation relationships for
this problem are given in Table 1, and the modeling
schematic representing this problem is shown in Figure 1.
The input data include reservoir average weekly inflow of
10 m3/s, municipal demand of 3.25 m3/s, irrigation demand
of 12 m3/s, and starting reservoir elevation of 1662.0 m.
There is one reservoir with two outflows, one for municipal
water supply through an orifice and the other one for
irrigation supply through a large capacity bottom outlet.
Since the bottom outlet is capable of emptying the reservoir
within a time step of 1 week, it does not require inclusion of
the outflow versus elevation curve. That is not the case with
the municipal supply outlet, which is given the highest
allocation priority, followed by irrigation and storage with
their respective cost factors of 100, 10, and 1. These cost
factors can be viewed as penalties per unit flow of deficit,
where deficit is the deviation from the target demand and
the objective function is converted to a goal programming
formulation by replacing xij with (uij � xij) in expression
(1), or they can be viewed as payoff factors if the minimi-
zation problem (1)–(3) is converted to maximization by
reversing the signs of the cost factors. The following para-
graphs analyze the results of NFA solution to this problem
in an iterative manner using the weekly calculation time
step:
[10] 1. The initial outflow capacity for orifice outflow is

set to the initial reservoir level of 1662 m, which corre-
sponds to 3.25 m3/s. For ease of demonstration, this outflow
capacity is set equal to the municipal demand.
[11] 2. The solution derived by the model significantly

depletes the storage due to the relatively large downstream
water demands compared with the available storage and
inflow.
[12] 3. The model then evaluates the solution obtained in

step 2 to check compliance with the constraints. It calculates

Table 1. Input Data for Test Problem 1

Volume, 1000 m3 Elevation, m Outflow, m3/s Elevation, m

0.000 1653.54 0.000 1660.00
772.030 1656.00 1.850 1661.00
1960.51 1659.00 3.250 1662.00
2412.63 1660.00 4.364 1663.00
2892.74 1661.00
3400.83 1662.00
3936.90 1663.00

Figure 1. Problem 1 modeling schematic.
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the average orifice outflow capacity based on time-integration
of reservoir outflows for the entire week by starting from
elevation 1662 m and calculating new elevation (and the
corresponding maximum outflow) at the end of each time
increment assuming steady state inflow of 10 m3/s and
outflows which are 12 m3/s for the bottom outlet and the
minimum of 3.25 m3/s and the limits imposed by the
outflow versus elevation curve given in Table 1. To achieve
reasonably accurate time integration of outflow capacity,
the model uses a sequential series of time increments equal
to 1/30th of the week (5.6 hours) and updates the reservoir
elevation at the end of each time increment.
[13] 4. The new outflow capacity of 0.975 m3/s obtained

in step 3 is checked with the assumed outflow capacity of
3.25 m3/s. Since there is a large difference between the two,
the process is repeated starting from step 1 and assuming the
average outflow capacity over a time step of 0.975 m3/s.
Steps 2–4 are thus repeated in an iterative manner until the
assumed outflow capacity approximately equals the outflow
derived by integration of outflow capacity in step 3.
[14] The final solution after several iterations converges

to municipal outflow of 0.969 m3/s, irrigation supply of
12 m3/s, and the ending reservoir level of 1658.103 m,
which corresponds to the storage deficit of 3.850 m3/s (this
is the flow required to get the storage back to the full supply
level of 1663 m within a 7-day period, and hence it is
expressed in the units of flow, as are all other components to
conform to the requirements of the network flow algo-
rithms). For arbitrarily assumed respective cost of deficit
per unit of flow of 500, 10, and 1 for municipal, irrigation
and storage component, the objective function (expressed in
the goal programming formulation as the total cost of
deficit) of this solution is

total cost ¼ 500ð3:25� 0:969Þ þ 10ð12� 12Þ þ 1ð3:86Þ
¼ 1144:36 ð4Þ

[15] The assumed costs can be viewed as a loss of
revenue in monetary terms per unit of deficit flow, or they
can be a subset of a larger set of priorities if the entire
modeling schematic is considered as a small part of a larger

system. Whichever case is considered is not essential for
further analyses. Deficits are calculated in brackets as the
difference between the stated target and the achieved
supply. It is easy to see that the above solution is far from
the best. A much better (and optimal) solution can be
obtained by assuming that the reservoir remains at its
starting level during the entire time interval. This would
result in 3.25 m3/s allocated to municipal demand and
6.75 m3/s to irrigation, while the storage level remains
unchanged from its starting level of 1662 m, which gives
a smaller storage deficits equivalent to a weekly flow of
0.89 m3/s. Storage deficit is evaluated as the difference
between the target volume at full supply level storage
capacity and the ending volume for a week, divided by
the length of the time step, hence the units of flow. The
corresponding value of the objective function is then

total cost ¼ 500ð3:25� 3:25Þ þ 10ð12� 6:75Þ þ 1ð0:89Þ
¼ 53:39 ð5Þ

This solution is superior to the one found by the iterative
approach, as it fully meets the municipal demand which has
the highest priority. The NFA solver can only take into
account a fixed value of the flow upper bound in each
iteration, be it 3.25 m3/s in the first iteration or 0.969 m3/s in
the final, while the lowest pricing vector on storage ensures
that either municipal demand or irrigation draw the reservoir
down. Network flow solvers cannot address inherent
relationship between two or more network flow variables.
In this case emptying reservoir storage for irrigation affects
the available supply to the municipality. Table 2 shows the
results of all iterations until convergence is achieved. This
problem was tested using the NFA version of the WRMM
model as well as the version of the MODSIM model used
by USBR. Both models converged to the same solution.
[16] An attempt to increase the storage penalty above

that of the irrigation penalty for the storage segment below
the invert of the orifice is not a good solution, since it
would render a large segment of storage inaccessible to
irrigation at all times, which may not be desirable. Any
attempt to shorten the time step will make no difference.
Under the NFA framework, reservoir storage will be
selfishly depleted by the downstream irrigation component
regardless of the time step length. Yet storage depletion
that encroaches on supply to the municipal demand
component is exactly what should be prevented to achieve
the best solution. This failure is not the result of an
unusual choice of the input data. To demonstrate this,
Table 3a shows the NFA solutions of the same problem for
a variety of inflows, ranging from 2 m3/s to 14 m3/s in

Table 2. Iterative Reservoir Outflow Solutions for Test Problem 1

Iteration Municipal Supply, m3/s Irrigation Supply, m3/s

1 3.250 12.000
2 0.975 12.000
3 0.971 12.000
4 0.969 12.000

Table 3a. NFA Solutions of Test Problem 1 for a Range of Inflows

Test Run
Inflow,
m3/s

Week Ending
Storage, m

Municipal Supply,
m3/s

Irrigation Supply,
m3/s

Storage
Deficit Penalty

Municipal Supply
Deficit Penalty

Irrigation Supply
Deficit Penalty

Total
Penalty

1 2.0 1653.54 0.511 7.112 6.51 1369.50 48.88 1424.89
2 4.0 1653.54 0.511 9.112 6.51 1369.50 28.88 1404.89
3 6.0 1653.54 0.511 11.112 6.51 1369.50 8.88 1384.89
4 8.0 1655.47 0.623 12.000 5.51 1313.50 0.00 1319.01
5 10.0 1658.10 0.969 12.000 3.86 1140.50 0.00 1144.36
6 12.0 1659.92 1.693 12.000 2.58 778.50 0.00 781.08
7 14.0 1661.19 2.683 12.000 1.57 283.50 0.00 285.07
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increments of 2 m3/s solved for a single time step using
the same starting reservoir level, and Table 3b shows the
correct solutions obtained using the full LP formulation
which is detailed in the following.

3. Modified Test Problem 1

[17] A method for linearization of reservoir outflow
constraints within a classical LP framework relies on the
use of MIP solvers, as outlined in the following. Also
included is a discussion on the accuracy of this representa-
tion for a system of reservoir with two outflows presented in
the Test Problem 1 above. Single time step optimization is
chosen for demonstration purposes as it is easier to follow
and verify. Failure to deliver accurate solution in single time
step optimization (STO) mode cannot be fixed by mere
introduction of multiple time step optimization (MTO), since
the nature of LP constraints in STO and MTO is identical.
[18] As part of setting up the constraint matrix, reservoir

storage is segmented into the zones that correspond to the
number of segments in the outflow versus storage curve as
shown in Figure 2. For a given time interval, storage can be
converted to the units of flow by being divided with the
length of the time step t. Hence for any starting and ending
storage (Vs/t and Ve/t) within a given storage segment, the
maximum outflow capacity Qmax(o) can be related to
average storage over the time interval using the slope S of
the segment in the linearized outflow curve as:

Qmax oð Þ ¼ 1

S
	 1
2

Vs

t
þ Ve

t

� �
: ð6Þ

[19] The term Qmax(o) represents the upper bound on
flow in the outlet structure channel for any storage in the
respective reservoir storage zone. Hence the constraint for

limiting the outflow from a single reservoir zone can be
written as

Q oð Þ � 1

S
	 1
2

Vs

t
þ Ve

t

� �
: ð7Þ

[20] When solving an individual time step, both Q(o) and
Ve/t are decision variables and only the initial storage Vs/t is
known. The above relationship imposes a limit on the
outflow capacity related to one storage zone. If the ending
reservoir elevation stays within the same zone as the initial,
the maximum outflow capacity would correspond to capac-
ity for the middle storage between the initial Vs/t and the
ending storage Ve/t.
[21] When multiple reservoir zones i are used, the total

integrated outflow must conform to

Qt oð Þ �
Xn
i¼1

1

Si
	 1
2

Vs ið Þ
t

þ Ve ið Þ
t

� �
: ð8Þ

[22] Term Vs(i) represents the starting volume at the
beginning of the time step for each zone i. The sum of
the initial volume in all zones i is the starting volume at the
beginning of time step t. The above approach has initially
been proposed and adopted by Windsor [1973] as a repre-
sentation of reservoir outflow constraints. In addition to the
above expression, which represents reservoir outflow limi-
tation as a function of segmented storage and the outflow
curve capacity, the other simultaneous constraint that must
be satisfied is the mass balance of inflows, outflows, and
storage change.
[23] The above LP formulation is only valid if reservoir

zones are filled from bottom to top and emptied from top to

Table 3b. Correct Solutions of Test Problem 1 for a Range of Inflows

Test Run Inflow
Week Ending
Storage, m

Municipal Supply,
m3/s

Irrigation Supply,
m3/s

Storage
Deficit Penalty

Municipal Supply
Deficit Penalty

Irrigation Supply
Deficit Penalty

Total
Penalty

1 2.0 1661.19 2.682 0.000 1.57 284.00 120.00 405.57
2 4.0 1662.00 3.250 0.750 0.89 0.00 112.50 113.39
3 6.0 1662.00 3.250 2.750 0.89 0.00 92.50 93.39
4 8.0 1662.00 3.250 4.750 0.89 0.00 72.50 73.39
5 10.0 1662.00 3.250 6.750 0.89 0.00 52.50 53.39
6 12.0 1662.00 3.250 8.750 0.89 0.00 32.50 33.39
7 14.0 1662.00 3.250 10.750 0.89 0.00 12.50 13.39

Figure 2. Reservoir zones as a function of the linear approximation of the outflow versus elevation
curve.
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bottom. While penalty settings may help achieve this
sequence of filling and emptying in some simple cases,
they are unable to guarantee it in every instance. A failure to
fill storage zones from top to bottom using only penalty
factors is demonstrated on a simple problem in Appendix A.
To overcome this, a binary variable associated with each
reservoir zone is introduced and the problem is reformulated
as a mixed-integer program (MIP) such that a complete
formulation also includes the binary variables in the set of
decision variables. The downside is that MIP solvers require
significantly larger computational effort. However, the in-
clusion of binary variables is necessary if the model is to
guarantee the proper sequence of filling or emptying of
storage, resulting in solutions that are physically possible.
Otherwise the reservoir inflows may be routed downstream
through the upper storage zones, which have sufficient
outflow capacity, leaving the lower storage zones empty.
This situation could be triggered by a high-priority demand
downstream of the reservoir, when the reservoir has insuf-
ficient elevation to support the adequate outflow capacity.
[24] Binary variables are integers with possible values of

0 and 1. Most commercial LP solvers recognize binary
variables as a distinct category, which eliminates the need to
specify the variable bounds. Assuming Zi are the binary
variables associated with reservoir zones i, and Ui are the
upper bounds in the units of flow for the respective zones,
where flow represents storage of each reservoir segment
divided by the length of the time interval, it is possible to
define the additional constraints as follows:

UiZiþ1 � Xi � UiZi i ¼ 1; n� 1: ð9Þ

[25] Variable Xi represents storage in zone i. Reservoir
zone i is full if Xi = Ui. The working of expression (9) is
demonstrated for the first two zones starting from the
bottom: (1) Storage is in the bottom zone, which requires
that Z1 = 1 and Z2 = 0, hence 0 � X1 � U1; (2) when storage
is in the first zone above the bottom zone, i.e., Z1 = 1, Z2 =
1, and Z3 = 0, expression (9) implies that four conditions
must be met simultaneously: X1 � U1 Z1, which becomes
X1 = U1 when the bottom zone is full; U1 Z2 � X1, which
also becomes U1 = X1 for Z2 = 1; X2 � U2 Z2, which works
the same as step 1 above written for zone 2; and U2 Z3 �
X2, which becomes 0 � X2.
[26] Of all the above conditions, the first two ensure that

X1 = U1 before X2 can take on any value above zero, which
is equivalent to forcing the storage to fill the bottom zone
first before filling the upper zone. In other words, the above
set of constraints ensures that if there is any water in zone 2
above the bottom (i.e., if Z2 = 1 and 0 < X2), the storage
zone 1 must be filled first (i.e., X1 =U1 and Z1 = 1). The same
considerations are extended to each set of two subsequent
zones by replacing 1 with index i and 2 with i + 1.
[27] The previous Test Problem 1 can be solved success-

fully with the above approach, giving the correct solution
where the initial reservoir level of 1662 m remains un-
changed. However, the problem becomes more difficult to
solve, as each binary variable adds two more rows to the
constraint matrix as per expression (9), and each control
structure adds one more row to the solution matrix required
to incorporate expression (8). Worst of all, large problems
will take considerably more computational effort to solve,

extending execution times by a factor of 100 or more
compared with simulations that do not require the use of
mixed integer LP formulation.
[28] Does the above scheme always work with adequate

accuracy? Surprisingly, the answer is no. Consider, for
example, a Modified Test Problem 1 obtained by switching
the priorities between the municipal demand and irrigation
(i.e., giving irrigation demand a higher priority than munic-
ipal). The best solution is now the one already given for the
original Test Problem 1 using the NFA solver, which
remains unchanged if the priorities between municipal
demand and irrigation are swapped. Paradoxically, the
NFA algorithm works for this priority system since the
iterative integration of outflow capacity for the municipal
supply can properly assess the zero outflow capacity for the
portion of the time step spent below the invert of the outlet
structure. The full MIP formulation cannot do this and it
consequently breaks down, as demonstrated below. Expres-
sion (8) imposes a limit on reservoir outflows with accuracy
which depends on the following: (1) Starting and the ending
reservoir levels for a time interval: When the starting level is
above the invert of the outlet structure and the ending level
is below it (or vice versa) for one time step, significant
inaccuracy may emerge; and (2) reservoir zones should be
sized to approximately equal volumes (while providing
reasonable linear segmentation of the outflow versus eleva-
tion curve), such that when reservoir elevation crosses
several zones within a time step, the integrated average is
approximately equal to the arithmetic average. Since the
model works with averaged flows per time step, the
integrated average approaches arithmetic average only if
equal amount of time was spent in each of the zones that
were emptied (or filled) within a given time step. This
condition is usually not met 100% all the time, since the
starting and the ending elevations may not be exactly at a
boundary of one or two zones, but it may help reduce
possible inaccuracies associated with an elevation drop (or
rise) over two or more zones.
[29] Failure of MIP to deliver a reasonably accurate

solution to modified Test Problem 1 with swapped priorities
between irrigation and municipal water requirements is
directly linked to condition 1 above. It is a drastic example
of failure and as such deserves to be dealt with in more
detail. The principal difficulty with the outflow constraint
represented by expression (8) is that it assumes that outflow
is happening over the entire time step t. However, if the
ending (or starting) elevation is below the invert of the
outlet structure, only a portion of the time step will be spent
above the invert, which means that the outflow will not be
possible during the entire time step. This is what constraint
(8) fails to address.
[30] TheweeklyMIP solution forModified Test Problem 1,

which differs from the original Test Problem 1 only by
swapped priorities between the municipal demand and
irrigation, delivered 12 m3/s to irrigation and 1.625 m3/s
to the municipal demand. To demonstrate failure, Table 4
shows the solutions of modified Test Problem 1 using a
series of seven sequential daily time step solutions. To make
the daily time step simulation transparent to weekly time
step, inflow was kept constant at 10 m3/s for each day of the
week, and so were the irrigation and municipal water
requirements at 12 m3/s and 3.25 m3/s, respectively, while
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the ending reservoir elevation for one day was used as the
starting elevation for the following day. Note that the
reservoir elevation drops each day, such that on day 4 it
shows a very small outflow of 0.045 m3/s, and for days 5, 6,
and 7 there is no municipal supply at all since the storage
level has dropped below the invert of the outlet structure. If
the proposed linearization scheme is to work well, then the
weekly time step simulation should deliver weekly flows
equal to the average of the daily flows obtained for the first
seven days, i.e., the municipal demand should receive
0.945 m3/s, which is the daily flow average shown in
Table 3a and which is close to the correct solution of
0.969 m3/s (the best solution of modified Test Problem 1
is in fact the same as the solution obtained from the NFA-
based model for the original Test Problem 1). However, an
attempt to produce a weekly simulation with the same
reservoir inflow and the same downstream water require-
ments allocated 12 m3/s to irrigation and 1.625 m3/s to the
municipality, almost double than the average of the daily
flow solutions of 0.945 m3/s. This is because integration of
the outlet structure capacity by expression (8) could not
account for any other time step length than the assumed
length of seven days. Yet the daily flow solution shows that
the integrated average should be calculated only over the
first 4 days. In other words, the length of the time step for
the constraint (8) should have been 4 days, not 7. The
difficulty is that in cases such as this one the ‘‘suitable’’
time step length is not known beforehand to allow proper
setting of constraint (8).
[31] One possible remedy to this problem is to introduce

a reduction factor f that represents the fraction of the time
step for which the elevation is above the invert of the outlet
structure. This factor should multiply the right-hand side of
expression (8). When f is equal to 1 the reservoir level does
not cross the invert during a time step; otherwise f is set to
the value given by expression (10):

f ¼ Vs � Vinv

Vs � Vend

: ð10Þ

[32] In expression (10) Vs represents the starting storage
at the beginning of the simulated time step, Vinv corre-
sponds to the storage at the invert of the outlet structure, and
Vend represents the storage at the end of the simulated time
step. Expression (10) de facto defines a ratio between the
storage change above the invert of the outlet structure and
the total storage change for a time step. This ratio represents
the fraction of the time step spent above the invert of the
outlet structure. For example, modified Test Problem 1

would yield the f factor of 0.567 calculated using volumes
in 1000 m3 as

f ¼ 3400:83� 2412:63

3400:83� 1658:41
: ð11Þ

This would reduce the outflow capacity to 0.921 m3/s
(=0.567 
 1.625), a much closer value to the daily
integrated solution of 0.945 m3/s in Table 3a than the value
of 1.625 m3/s obtained without using the adjustment factor f.
[33] In a single time step solution mode, Vs and Vinv are

fixed; however, Vend is a decision variable. Therefore
introduction of the term f as a multiplier on the right-hand
side of expression (8) generates a mixed integer nonlinear
constraint, and takes the entire problem out of the scope of
the classical linear programming. The above adjustment
factor can also be incorporated in multiple time step
optimization by utilizing the value of the binary variable
Zi of the zone immediately above the invert of the outlet
structure. For reasons of simplicity and without loss of
generalization, assume that the starting and ending eleva-
tions are within the first zone above or below the invert.
Expression (10) can then be rewritten in the following form:

f ¼ Vs � Vinv

Vs � Vinv þ Vinv � Vendð Þ Zt�1
i � Zt

ið Þ2
: ð12Þ

[34] Variables Zi
t –1 and Zi

t in expression (12) represent the
value of the binary variable associated with the zone
immediately above the invert of the outlet structure at two
subsequent time steps: (t � 1) and t, respectively. In any
time step that ends with full or partial storage in this zone,
the value of Zi is set to 1; otherwise, if the zone is empty at
the end of a time step, Zi is set to 0. The settings are ensured
by satisfying constraints (9). When reservoir storage starts
and ends above the invert within a given time step, the
difference between the two binary variables in expression
(12) is zero, and the value of f is reduced to 1. Conversely,
when the storage level crosses the invert during the time
step (in either direction), the squared difference of the two
binary variables is 1, thus reducing expression (12) to
expression (10). It should be noted that in multiple time
step optimization, both Vs and Vend in expression (12) are
variables. Hence, in multiple time step optimization, the
reservoir outflow constraints would contain products of
quadratic and binary terms, which makes them unsuitable
for LP implementation. The general form for defining upper
bound on reservoir outflow channel can thus be written as

Qt oð Þ � f
Xn
i¼1

1

Si
	 1
2

Vs ið Þ
t

þ Ve ið Þ
t

� �
; ð13Þ

where factor f is defined by (12) while the rest of the above
expression conforms to (8). Index i in expression (13) is the
counter for storage zones from bottom zone to top zone
while t is the length of the simulated time step. In conclusion,
calculation of the right-hand side of expression (13)
provides the upper limit of reservoir outflow over a time
step t. When the starting and ending storage volumes are
both above the invert of the outlet structure, factor f in
expression (13) takes the value of 1, and expression (13) is

Table 4. Modified Test Problem 1 With Daily Solutions

Time,
days

Reservoir
Elevation, m

Irrigation
Supply, m3/s

Instantaneous Outflow
Capacity, m3/s

Average Daily
Outflow,a m3/s

0 1662.00 12 3.250
1 1661.20 12 2.692 2.971
2 1660.57 12 1.592 2.142
3 1660.10 12 0.615 1.104
4 1659.70 12 0.090 0.353
5 1659.32 12 0.000 0.045
6 1658.93 12 0.000 0.000
7 1658.49 12 0.000 0.000

aSeven-day average is 0.945.

W02426 ILICH: SHORTCOMINGS OF LINEAR PROGRAMMING

7 of 14

W02426



the same as expression (8). If, however, the reservoir level
crosses the invert of the outlet structure during the
calculation time step t, factor f provides an estimate of the
fraction of the time step t, which is spent above the invert of
the outlet structure and reduces the outflow capacity
accordingly. Introduction of factor f brings in higher
accuracy, but at the expense of requiring application of
nonlinear solution techniques. However, introduction of
factor f allows the users to continue to use weekly time
steps, since the use of shorter (e.g., daily) time steps lowers
execution efficiency and introduces other difficulties
discussed later in this paper.
[35] To dispel any notion that this problem has anything

to do with the number of points used in the outflow versus
elevation curve or in the volume versus elevation curve,
simpler variants of both the original problem 1 and modified
problem 1 are solved assuming a cylindrical shape of
storage, where the rate of elevation drop is constant for a
fixed outflow rate, and a linear outflow versus storage
relationship is assumed. Although in reality outflow is not
a linear function of storage, this can be assumed for
demonstration purposes. Benefits of such an assumption
are that only two points on the curve are sufficient to define
it, and the effects of the curvature are eliminated. The
starting storage level for both problems is 1662 m, and
the assumed linear relationships for volume versus elevation
and outflow versus elevation are given in Table 5a, while
Table 5b provides the results. As earlier, the NFA solution
allocates to the municipal supply 0.733 m3/s (this can be
compared with 0.969 m3/s obtained earlier for the original
problem) while the best solution is the same as before
(3.25 m3/s). The principal reason for failure is the same;
that is, the NFA solution procedure is unable to evaluate the
effect that the bottom outlet releases for irrigation have on
municipal supply. Modified test problem 1 also shows
similar failure, with a deceiving value of the objective
function which is lower than what it should be (22.1 instead
of 28.6). The reason for this is because municipal supply
gets 1.455 m3/s while the maximum achievable is only
0.733 m3/s for the given starting and ending storage levels,

as seen in the correct solution column. Again, the failure
here is inherent in the linearization scheme of the outlet
curve, which is based on the assumption that average
outflow from the reservoir estimated between the starting
and the ending elevations will take place over the entire
time step, while in reality it can only take place for a portion
of the time step when elevation is above the invert of the
outlet structure.
[36] One approach to resolving this issue could be to

shorten the time step t. If the calculation was conducted
with a series of seven daily time steps, the results would be
more accurate, as attested by the average of daily reservoir
outflows in Table 4. Again, the problem would still persist
for one of the seven days when the invert is crossed, but the
total volumes in error would be reduced due to shorter time
step length of 1 day. However, the use of daily time step
poses a number of problems. To begin with, the basic
assumption in LP-based models is that water is available
from any storage to any demand in the system within the
calculation time step t. Assuming an average water velocity
of 0.5 m/s, this would restrict the length of the total river
system to about 43 km downstream of any supply reservoir.
If larger systems with multiple reservoirs are to be analyzed,
the model must include ability to account for channel
storage change and travel time in the system. The most
suitable way to do this within the mathematical program-
ming framework is to introduce hydrologic routing equa-
tions as additional constraints in the model. As section 4
will show, this is fraught with dangers and difficulties that
have yet to be addressed successfully.

4. Inclusion of Hydrologic Channel Routing Into
an LP Formulation

[37] There are many advantages of introducing shorter
time steps in basin allocation models. Simulations with
monthly time steps may give overly optimistic results due
to underestimating the amount of reservoir spills which
happen during short runoff events that are not seen in the
monthly data. Alberta Environment, a provincial govern-
ment water management agency in western Canada, which
has maintained and used the WRMM model since the early
1980s, has long abandoned the use of monthly time steps,
since it was established that reservoir spills obtained from
monthly simulations were on average close to 30% lower
than in weekly simulations for the same scenarios. This
should not come as a surprise, since the use of average
monthly flows removes the peaks and provides ‘‘flat’’
reservoir inflows that are much easier to manage by the

Table 5b. Model Outputs for Cylindrical Storage and Linear Outflow Curve

Component

Test Problem 1 Modified Test Problem 1

NFA
Solution

Correct
Solution

Penalty
per Unit of
Deficit Flow

MIP
Solution

Correct
Solution

Penalty
per Unit of
Deficit Flow

Reservoir elevation, m 1658.02 1662.47 1656.98 1658.02
Irrigation supply, m3/s 12.000 6.428 10.0 12.000 12.000 100.0
Municipal supply, m3/s 0.733 3.250 100.0 1.455 0.733 10.0
Storage deficit, m3/s 3.421 0.366 1.0 4.143 3.421 1.0
Total penalty 1261.9 56.1 22.1 28.6

Table 5a. Cylindrical Storage and Linear Outflow Curve

Volume, 1000 m3 Elevation, m Outflow, m3/s Elevation, m

0.000 1653.54 0.000 1660.00
3936.90 1663.00 4.364 1663.00
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model. A sizeable runoff event that lasted for a 1 or 2 weeks
is typically lost when flows are averaged over a month. If
such an event was modeled with a full starting storage with
a weekly time step, a significant portion of the runoff would
spill. Such magnitude of spills is typically not seen in
simulations with monthly time steps.
[38] A move to shorter (e.g., daily) time steps is

therefore beneficial. However, the total travel time of
water from the most upstream storage to the most down-
stream users in medium and larger river basins is well
beyond 1 day, and typically larger than a week. With an
average water velocity of 0.5 m/s, any river exceeding the
length of 300 km may have travel time longer than 1 week,
especially during the low-flow season. It is therefore not
surprising that many model vendors have added channel
routing capabilities to their models, typically by using the
Muskingum or Muskingum-Cunge methods since they are
given as a linear form of channel inflows and outflow. Test
Problem 2 and the discussion that follows will argue the
following two points: (1) Hydrologic channel routing
cannot be included in the LP-based models for a single
time step optimization without violating the assumption of
‘‘demand driven reservoir releases,’’ which is the basic
premise on which these models were built and on which
they operate on a steady-state basis; and (2) inclusion of
channel routing in multiple time step optimization frame-
work may often require nonlinear representation of routing
coefficients, since routing coefficients should be updated
when channel flows change from low- to high-flow
seasons. This in turn may require a shift from LP frame-
work in search for other suitable solution techniques.
[39] The following is a review of the routing capabilities

of some of the models that are currently in use. Some
models such as MODSIM or REALM offer Muskingum
routing capabilities while they can only handle single time
step optimization, as detailed in their online user manuals.
They are therefore likely to run into the difficulties demon-
strated by Test Problem 2 presented below. Models such as
RIVERWARE and ARSP offer channel routing only as a
refinement of their steady state simulation based on a daily
time step [Boroughs and Zagona, 2002]. Braga and Barbosa
[2001] report on inclusion of channel routing into multiple
time step optimization using an advanced Network Simplex
Solver [Ahuja et al., 1993] that can handle non-network side
constraints required for inclusion of channel routing, but
they omit discussing the impact of assuming a fixed value
for travel time constant K in Muskingum routing equation,
which can cause significant inaccuracies as initially reported
by Ponce and Yevjevich [1978] and confirmed subsequently
by many other researchers. Calibration of the Muskingum
routing coefficients in their work was demonstrated by
fitting a single event hydrograph.
[40] One of the most versatile and flexible models pres-

ently available is OASIS. This model has the capability to
include Muskingum channel routing in either single or
multiple time step optimization framework. However, rout-
ing is rarely used in MTO, as acknowledged by the OASIS
model vendors from Hydrologic, Inc. Instead, single daily
time step simulation within an LP framework and with
channel routing is used on most studies [Susquehanna River
Basin Commission, 2006], which makes the modeling
vulnerable to the difficulty demonstrated by Problem 2.

The vendors of OASIS recognized the difficulty presented
in Test Problem 2 in their ongoing work (personal commu-
nication, 2007) and pointed out that a perfect solution for
this has yet to be found. Consequently, their modeling
efforts focused on the development of heuristics rules and
user-defined formulas for reservoir releases, all of which
tend to diminish the role of the LP solution engine that is
supposed to drive reservoir releases. Similar solution strat-
egy was resorted to recently by Alberta Environment, while
attempting to run 6-hourly time steps with channel routing
within an LP framework. The routing scheme could only
work with a fixed set of prescribed user-defined reservoir
releases or fixed-target reservoir levels that had to be
enforced. Also, experience from Alberta Environment
pointed out that successful seasonal channel routing
requires dynamic updates of the channel routing coefficients
for seasonal flow changes. Without dynamic updates,
hydrologic routing could not work for a range of channel
flows that start at 20 m3/s and reach over 500 m3/s within a
4-month period. Consequently, this issue deserves attention,
given the current widespread practice of using channel
routing within a single time step optimization framework.
The purpose of Test Problem 2 is to alert the user commu-
nity of bad practice of modeling channel routing within LP
framework with a single time step optimization. As dem-
onstrated in the following, MTO requires automatic updates
of the routing coefficients which can no longer be assumed
constant when the flow change is significant. This violates
the assumption of constant routing coefficients that is the
basis for LP formulation.
[41] In a daily time step simulation mode, release from

storage at time t is made to meet demands that are lagged
several days later, due to the size of the basin being modeled
and the associated travel times between the storage reservoir
and demand nodes. Hence a combination of MTO and
adequate channel routing is required to account for flow
attenuation. Without MTO, the LP solver would force
higher outflows from the reservoir than necessary in order
to reduce the travel time and attempt to meet a downstream
demand within a short routing time step, when in fact this
demand should have been met by storage releases made in
one or more of the preceding days. It should also be noted
that to run a medium-sized network on a daily basis with
500 arcs in MTO over a 70-year period would involve 500

365 
 70 = 12.775 million variables! Problems with lengthy
computer execution times, truncation errors, troubleshooting,
and/or debugging of infeasible solutions probably explain
why using MTO with routing is not the norm in practice.
[42] Channel routing methods suitable for LP implemen-

tation include Muskingum, Muskingum-Cunge, or the
Williams routing equation built into the SSARR model.
While they differ in the way the routing coefficients are
calculated and updated, their suitability for LP implemen-
tation is due to explicit formulation of routed channel flows
in a linear form:

Qtþ1
jþ1 ¼ C1Qt

j þ C2Qtþ1
j þ C3Qt

jþ1: ð14Þ

[43] Indices t and t + 1 in expression (14) represent time,
while indices j and j + 1 represent upstream and down-
stream end of a channel, respectively. To include the
channel routing formulation given by expression (14) above
in the LP matrix of constraints, the users have to define the
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reference flow rate for which the routing coefficients Ci are
determined. However, the use of a single reference flow
value for defining coefficients Ci causes inaccuracies, as
reported by Ponce and Yevjevich [1978]. As a result, the
current state of the art hydrologic models such as HEC-
HMS [Hydrologic Engineering Center, 2006] and HSPF
[U.S. Environmental Protection Agency, 2006] all utilize
updated values of coefficients Ci based on the flows from
previous time steps, or by using the average of the three
flow rates on the right-hand side of expression (14). An
attempt to include dynamic updates of the values of coef-
ficients Ci in the LP framework for multiple time step
optimization would introduce nonlinear constraints in the
solution matrix since coefficients Ci would automatically
take the form of Ci(Q). This would constitute departure
from LP. To the best of the author’s knowledge, there has
been no reported attempt so far on the efforts to include
updated values of Ci as nonlinear constraints in the multiple
time step optimization framework. Yet the errors associated
with relying on the fixed reference flows and the use of
constant coefficients Ci have been well documented. They
can be substantial, especially for long-term simulations
where channel flows vary from dry to wet seasons by an
order of magnitude.

5. Test Problem 2

[44] Test problem 2 depicted in Figure 3 consists of a
simple system with one reservoir, two channels, and two
downstream withdrawals. Only the upstream channel 1
located between the reservoir and the withdrawals is mod-
eled using hydrologic channel routing. Channel 2 is needed
to handle possible system spills which are sometimes
inevitable. The storage versus elevation curve for reservoir
1 is the same as in the previous example (Table 1), and the
initial elevation is set to 1662.92 m. Two 6-hourly time
steps are solved, the first one being a steady state solution
that provides the initial channel flows for the routing
equation (14). Reservoir inflow is set to 2 m3/s, and
municipal demands (link 5) are set to 1 m3/s for both time
steps, respectively, while irrigation demand (link 4) is set to
1 m3/s for the first and 2 m3/s is set for the second time step.
Assume that the routing coefficients Ci in this example were
estimated as C1 = C2 = 0.1523 and C3 = 0.6954. These
estimates were obtained using the linear variant of the
Williams equation employed by the SSARR routing model,

and the actual details related to how they were obtained are
not essential for this demonstration. It should be noted that
the sum of all three routing coefficients is 1, which is a
standard expectation for a linear routing model. Assume
that the model solves the maximum flow problem, i.e., it
maximizes the sum product of flows times priorities, where
the priority vector has the weight factors of 1, 10, and 1000
for a unit of flow assigned to storage, irrigation, and
municipal demand, respectively, while the channel flow
weights are set to zero. There are no outlet capacity
constraints assumed in this example, and hence the outflow
limits are equal to the channel flow limits which are set
sufficiently high at 50 m3/s. The initial steady state solution is
easy to see: Inflow of 2 m3/s is routed through the reservoir
into channel 1 and it is split at the end of channel 1 evenly
to irrigation (channel 4) and the municipal demand, since
they both require 1 m3/s in the first 6 hourly time step. This
steady state solution provides the flow of 2 m3/s at the
beginning and at the end of channel 1. Hence the values of
Qj
t and Qj+1

t in equation (14) are initially set to 2 m3/s.
Together with the routing coefficients already defined,
equation (14) becomes

Q2 ¼ 0:1523 	 2þ 0:1523 	 X1 þ 0:6954 	 2: ð15Þ

[45] The storage balance for reservoir 1 equates the sum
of the initial storage Vini/T plus the inflow of 2 m3/s to the
sum of the outflow (variable X1) and the ending storage
(variable X3 also expressed in the units of flow). The initial
volume that corresponds to the elevation of 1662.92 m is
3,900,000 m3 as per volume versus elevation curve in Table 1.
Hence the term Vini/T is evaluated as 3,900,000/(6
 3600) =
180.5556 m3/s for the 6-hourly time step. Using the weights
listed above and the mass balance equation as constraints, the
LP can be formulated as in term so flow maximization as

Maximize 1 	 X3 þ 10 	 X4 þ 1000 	 X5 ð16Þ

subject to

X1 þ X3 ¼ 180:5556þ 2 ð17Þ

Q2 � X4 � X5 � X2 ¼ 0: ð18Þ

[46] After substituting term Q2 by the right-hand side of
equation (14) and moving the constant terms on the right-
hand side, equation (18) is transformed to

0:1523 	 X1 � X4 � X5 � X2 ¼ �1:6954 ð19Þ

[47] The upper bounds on variables X1, X2, X3, X4, and X5

are 50, 50, 250, 2, and 1, respectively. For this formulation,
LP solver gives the following solution: X1 = 8.5657; X2 = 0;
X3 = 173.99; X4 = 2; and X5 = 1. All water demands are
met, which should come as no surprise given that there is
an upstream reservoir. However, to meet the increase in
demand on two subsequent time steps from 1 to 2 m3/s
for the irrigation block, the model had to release a much
higher flow (8.5657 m3/s) from storage! This is a
consequence of the fact that with flows around 3 m3/s
it takes around 17 hours for water to reach the irrigation
block from the reservoir. However, the model finds the

Figure 3. Modeling schematic for Test Problem 2.
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reservoir outflow that will, after routing, provide an
increase of 1 m3/s at the downstream end of channel 1
within the 6-hourly time step. Hence the model decides to
‘‘flood’’ the downstream channel to shorten the travel
time such that the flow increase of 1 m3/s will be
available within the 6-hour period. This is not the way
the reservoir would actually be operated. Rather, the
operator would make storage releases in advance taking
into account the travel time to the destination points.
Hence, to properly account for channel routing in this
example, multiple 6-hour time step optimization should
be conducted for three time steps simultaneously. In other
words, two more 6-hourly time steps should be added to
the system such that they precede the above time step.
The model should then find moderate reservoir releases
that after being routed through channel 1 over the next
two 6-hourly time steps, provide sufficient increase of
flow to meet the demand in the third time step, without
the need to cause any unnecessary spills. The demands at
the end of channel 1 should not be modeled at all in the
first two time steps, since storage releases are not able to
reach the downstream end of channel 1. Elaborate details
on how multiple time step optimization should be setup
to achieve this are beyond the scope of this paper, and
they have already been covered elsewhere in the literature
[Braga and Barbosa, 2001]. The main purpose of this
test problem was to demonstrate that channel routing
cannot work within the LP framework using a single
time step solution unless the system is so small that the
entire travel time is shorter than the length of the time
step required for routing, which is typically between 6
and 24 hours (the shorter the time step, the more accurate
the routing transformation). This severely restricts the size
of the systems that can be modeled as LP with channel
routing. Multiple time step optimization would only solve
the above riddle for fixed values of routing coefficients
that must be known in advance for each time step. Yet,
for larger flow variations between wet and dry seasons,
the routing coefficients must be updated as a function of
channel flows, which brings the entire LP framework in
question even within the multiple time step optimization
framework.
[48] There are two possible remedies to this situation.

One is to consider nonlinear programming solution tech-
niques that would allow automatic dynamic updating of
routing coefficients during the search process. Once such
attempt has been made [Ilich and Simonovic, 2001], with
a search engine based on a hybrid between network flow
and genetic algorithms, resulting in an efficient search
conducted directly on the network and being restricted
only to the feasible region. This solver has been applied
[Ilich et al., 2000a; Ilich, 2001], and its current improve-
ments are related mainly to the development of ability to
conduct automatic self-calibration of its search parame-
ters. However, as any other nonlinear search engine, this
one is also unable to guarantee finding the global
optimum, in spite of the fact that its search proceeds in
parallel from all corners of the feasible region, which
gives it a good statistical chance of converging to a
global optimum. The principal advantage of LP and its
variants such as quadratic programming is a guarantee
that global optimum will be found.

[49] The other possible remedy is to try to develop a
complete linearization of the channel routing equation. This
would involve splitting flow in the channel into a number of
segments (i.e., treating each channel as a set of parallel
subchannels) and devising an algorithm that would define
fixed routing coefficients for each parallel subchannel. The
sum of routed flow in all parallel subchannels would then
have to equal the routed flow in a physical channel. If this
could be done, linear programming formulation would still
be possible for multiple time step optimization. This is a
hopeful approach since it is known that routing coefficients
change slowly with the change of channel flow, and they
can have representative values for a limited flow range
within a channel.

6. Other Nonlinear Components

[50] Detailed treatment of the hydropower component
has not been included in this paper, although most models
referenced in this paper claim to have some capability to
model hydropower generation, a claim that is highlighted
by the vendors of RIVERWARE or OASIS. It is sufficient
to notice that hydropower components introduce nonlinear
terms both in the constraints and in the objective function.
Most efforts to linearize them so far have resorted to
iterative calls of LP solvers, without explicit critical
reviews of the possible lack of accuracy that iterations
may cause. Hydropower generation is described by the
following equation:

P ¼ QHh Q;Hð Þ; ð20Þ

where P is the average power over a time step, Q is the
average flow through the turbines, H is the average net head
over a time step, and h is the efficiency factor, which
depends on both flow and net head. In fact, there are two
efficiency functions, one associated with the efficiency of
the turbine and the other one associated with efficiency of
the generator. Those two efficiency functions usually do not
peak for the same choice of Q and H. Of the other two
terms, net head H is often difficult to evaluate dynamically
during the solution process. It can be approximated as the
average upstream storage elevation over a time step reduced
by hydraulic losses through the diversion tunnel, and then
also reduced by the average water elevation immediately
downstream of the hydropower plant over the calculation
time step. The water surface elevation downstream of the
plant may be governed by a flow rating curve, or by the
pool elevation of a downstream reservoir if there are two
sequential reservoirs forming a cascade. In either case, both
downstream and upstream elevations are a function of the
reservoir mass balance, where the flow variable Q is an
important constituent. Hence the net head is a function of
reservoir inflows, outflows, starting elevation, the shape of
the storage capacity curve for one or more reservoirs, and
possibly hydraulic losses through the diversion tunnel or the
flow rating curve downstream of the plant. Most of these
constituents are interconnected and change dynamically
during the search procedure. Last but not least, maximum
flow through the turbine Q is limited by two nonlinear
functions of the net head, one related to the turbine capacity
and the other to the capacity of the generator.
[51] Most of the referenced models claim the ability to

optimize hydropower using LP with iterations. Possible
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failures of LP solvers to deliver high-quality solutions in the
field of hydropower modeling and the adequate remedies
for such failures have yet to be fully addressed in a
comprehensive manner.

7. Conclusions and Recommendations

[52] This paper examines the shortcomings of LP-based
models in river basin management and planning to address
hydraulic and hydrologic constraints found in river basin
networks. In particular, the paper focuses on the limitations of
LP to optimize river basin allocation problems that involve
multiple reservoir outflows and channel routing, and claims
that neither of these limitations can be overcome in a
satisfactorymannerwithin the LP framework. The limitations
are demonstrated using numerical examples with sufficient
input data to be independently verified. A recommendation is
made to use LP techniques with caution and be aware of the
possible problems that may arise even when full LP applica-
tion models are considered. A suggestion is also made to
encourage researchers and practitioners in this field to define
a set of desired technical specifications for river basin
allocation models, and work jointly to define a standard set
of test problems for model verification that could be used for
models that utilize either LP or various non-LP solution
strategies. In closing, future research in model development
should attempt to address issues raised in this paper.

Appendix A

[53] Here we demonstrate the need to use binary variables
for modeling of reservoir operation within the LP framework
using linearized outlet structure constraints. The test problem
presented here is first solvedwithout binary variables, and the
solution is analyzed. The problem involves a single reservoir
with two outlets, with low starting elevation such that
reservoir refill is required to reach the desired outflow
through the outlet structure. The input data are the same as
in Test Problem 1, except that municipal demand is set to
4 m3/s and irrigation requirement is set to 8 m3/s, and the
starting storage elevation is set to 1656 m. Reservoir storage
is divided into four zones, with penalties of 1, 2, 3, and 4
assigned to the zones in the top to bottom order. These
penalties should ensure that the bottom zone is filled first,
followed by the zone above it, and so on. It also ensures that
the top zone is emptied first at times of reservoir release,
followed by the zone below it, etc. This penalty scheme
works well when there are no side constraints that interfere
with it, as is the case in this example. Figure A1 shows the arc
representation of all components. There are six variables in
the problem. Variable X1 represents supply to irrigation,
variable X2 is municipal supply (which is only possible
through an outlet structure with outlet versus elevation curve
given in Table 1), and the four reservoir zones X3 through X6
represent reservoir storage at the end of calculation time step.
Table A1 provides the upper bounds in units of flow and
penalty factors chosen for this test problem. The upper
bounds for storage zones were read for the four elevations
given in the outflow versus elevation curve (1660, 1661,
1662, and 1664 m), converted to incremental storage (or
storage of a single zone), and divided by the length of the
week in seconds to obtain storage zones in the units of flow.
For example, for the invert elevation 1660 m, the

corresponding storage is 2,412,630 m3. When divided
by the length of the week in seconds (86,400 
 7), it gives
3.989 m3/s, which is the upper bound of the bottom zone 4.
For zones 3, 2, and 1, it is necessary to first calculate
incremental storage. For example, for zone 3 the storage is

2892740� 2412630 ¼ 480110 m3: ðA1Þ

[54] When divided by the length of the week, this gives
0.79383 m3/s, as seen in Table A1 for variable X4. To
evaluate slope S for the first storage segment, divide
incremental storage of 0.70383 m3/s by the incremental
change in outflow capacity, which is (1.85 � 0) for the first
segment of the outlet curve given in Table 1. Consequently,
S1 = 0.79383/1.85 = 0.38045, and the term 1/(2S1) for the
first zone above the invert becomes 1.1652. Similar terms
for the other two zones above invert are derived in the same
way to give 0.83324 and 0.62841. We now focus on
expression (8) in the main text. In it, the outflow capacity
on the right-hand side is calculated as the average of the
starting and ending outflow capacity for a given time step.
Since the starting storage elevation is 1656 m, which is
below the invert, the initial outflow capacity is zero. In other
words, term Vs(i)/t for all zones i above the invert is zero,
since none of the zones above the invert have any storage at
the beginning of the time step. The only other term on the
right-hand side of expression (8) is Ve(i)/t, which is repre-
sented by variables X4 through X6, since X3 represents
storage zone below the invert that is only accessible through
the bottom outlet for irrigation supply. Move the remaining
right-hand side terms of expression (8) to the left side:

Qt oð Þ �
Xn
i¼1

1

Si
	 1
2

Ve ið Þ
t

� �
� 0: ðA2Þ

[55] We can now formulate the allocation program as an
LP using flow maximization objective:

Maximize 10X1 þ 100X2 þ 4X3 þ 3X4 þ 2X5 þ 1X6 ðA3Þ
subject to

X1 þ X2 þ X3 þ X4 þ X5 þ X6 ¼ 10þ 1:2765 ðA4Þ

X2 � 1:16523X4 � 0:83324X5 � 0:62841X6 � 0 ðA5Þ

0 � Xi � Ui; ðA6Þ

where Ui are the upper bounds on Xi defined in Table A1,
while 1.2765 m3/s in the mass balance equation (A4)

Figure A1. Layout of system variables.
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represents the available storage of 772,030 m3 expressed in
the units of flow at the beginning of the weekly step. The
above problem can be solved using a spreadsheet solver.
The solution is X1 = 6.5742; X2 = 2.182; X3 = 0; X4 =
0.7938; X5 = 0.8401; and X6 = 0.8863. To maximize
outflow to the municipal demand X2, the model has moved
all storage to the upper zones which are above the invert,
and left the storage in the zone below the invert empty (X3 =
0). It did not help that the bottom zone has the highest
penalty of 4 compared with other storage zones. It can be
emptied through the bottom outlet for irrigation supply,
which has a demand on it with a penalty of 10. There is no
question that this solution makes no physical sense, since
storage must be filled from bottom to top. Binary variables
are the only mechanism that can prevent this from happening.
Theymake the problemmuchmore difficult to solve, but they
guarantee that situations such as this cannot happen. Four
binary variables (X7 through X10) are introduced into this
problem. Their penalty factors are all zero. However, they are
linked to the storage zone bounds by additional seven
constraints that are added to the problem:

X3 � 3:98914 X7 � 0 ðA7Þ

X4 � 0:79383 X8 � 0 ðA8Þ

X5 � 0:84010 X9 � 0 ðA9Þ

X6 � 0:88636 X10 � 0 ðA10Þ

�X3 þ 3:98914 X8 � 0 ðA11Þ

�X4 þ 0:79383 X9 � 0 ðA12Þ

�X5 þ 0:84010 X10 � 0: ðA13Þ

[56] With the above additional constraints, the model
is solved for all 10 variables. The solution is X1 =
2.58508; X2 = 2.182; X3 = 3.98914.; X4 = 0.7938; X5 =
0.8401; X6 = 0.8863; X7 = 1; X8 = 1; X9 = 1; and X10 = 1. It
can be noted that there are no gaps in filling storage zones
from bottom to top in this solution. Also, the model
correctly decided to maximize storage over the calculation
time step at the expense of reducing supply to irrigation,
since that is the only way of maximizing municipal supply,
which is constrained by the available storage and outlet

structure flow limits. If this problem is solved using any
NFA solver, the supply to irrigation would be much higher
and the solution would be far from optimal, for the same
reason already demonstrated earlier in Test Problem 1. The
only difference between the original Test Problem 1 and this
test problem is that in this case storage undergoes refill, as
opposed to Test Problem 1 where storage was drawn down.

[57] Acknowledgments. The Water Resources Management Model
used for the above test runs is a public domain modeling tool owned and
maintained by Alberta Environment, a provincial government water man-
agement agency in Canada. The contribution of Leslie Stillwater of USBR,
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