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Abstract. Automated real-time reservoir operation has emerged as a critical solution for optimizing 

water resource management in an era of increasing climate variability and extreme weather events. 

While manual dam operations often rely on rule-based approaches and operator intuition, they are prone 

to errors, particularly during emergencies. Advances in short-term runoff forecasting and mathematical 

optimization offer transformative potential to address these challenges by enabling data-driven decision-

making. This paper explores the integration of runoff forecasts with the WEB.BM reservoir optimization 

model to achieve efficient and reliable dam operations, with a case study focusing on the Damodar River 

Basin in India. The case study presents preparation for the integration of a runoff forecasting model 

developed by AECOM with a reservoir optimization framework tailored for the Damodar Valley 

Corporation (DVC) reservoir system. The study utilizes historical flood events and a 6-hour timestep to 

test the combined framework. The optimized model, configured for the basin’s unique hydrology, 

subdivides the catchment into key sub-regions to align with the forecasting model and incorporates 

hydrological channel routing to simulate flow dynamics accurately. Testing scenarios include three 

historical floods (2000, 2006, and 2009) with forecast horizons of 1, 2, and 3 days, assessing the model’s 

ability to maintain downstream flow within the safe channel capacity of 2850 m³/s at Jamalpur. The 

findings demonstrate significant improvements over historical operations, with peak flow reductions of 

up to 50 percent achieved through optimized pre-flood and automated drawdowns conducted within 1, 

2 or 3 days before the incoming flood, thus mimicking responses to the information from the runoff 

forecasting system. The model effectively balances reservoir releases, downstream channel flows, and 

tributary inflows, mitigating flood risks even under conservative assumptions of starting storage levels. 

For the 2009 flood, the model reduced peak flows at Jamalpur from 7649 m³/s to 5500 m³/s, 3517 m3/s 

and 2850 m3/s for the respective 1, 2 and 3-day available runoff forecasts.  The other two historical 

floods in 2000 and 2006 required only 1 and 2 days of respective flood forecasts to keep downstream 

flows within the threshold boundaries, thus eliminating flood damage. This showcases the model’s 

ability to dynamically adapt reservoir operations to evolving inflow conditions, significantly 

outperforming traditional rule-based systems. The uniqueness of this approach lies in its integration of 

real-time data acquisition systems (RTDAS), runoff forecasting, and optimization within a single 

operational framework. This eliminates reliance on static rule curves, offering a scalable and adaptable 

solution for multi-reservoir systems worldwide. With ongoing advancements in remote sensing and 

forecasting technologies, the framework presented here serves as a template for modernizing dam 

operations and enhancing flood resilience globally. This research underscores the potential for 

transformative improvements in water resource management through predictive and automated 

solutions. 

Keywords: Dynamic Channel Routing, Model Predictive Control, Real-Time Data Acquisition 

Systems, Real-Time Reservoir Optimization  
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1 Introduction and literature review 

Efficient and reliable reservoir operation is critical for water resource management, balancing 

flood control, irrigation, hydropower generation, and municipal water supply. As climate-

driven extreme weather events grow in intensity and frequency, traditional manual and rule-

based reservoir operations reveal their limitations. These methods often rely on static operating 

rules and operators’ intuition, which can lead to suboptimal decisions, especially during 

emergencies. The integration of real-time runoff forecasting and mathematical optimization 

offers a transformative opportunity to address these challenges by enabling dynamic, data-

driven decision-making. With more than 6,000 large dams, India faces acute challenges in 

managing floods and droughts. The Damodar River Basin, located in eastern India and known 

for its flood-prone nature, served as a case study highlighting the complexities and potential of 

modern reservoir optimization techniques. With multi-reservoir systems designed for flood 

mitigation, hydropower, and irrigation, optimizing the basin’s operations has significant 

implications for disaster risk reduction and sustainable water management. 

Various models have been developed for reservoir optimization, ranging from traditional rule-

curve-based approaches to advanced mathematical programming methods. Rule-curve models, 

though widely used, are static and often fail under dynamic inflow conditions.  Various 

optimization strategies have been used in the past.  Among else, these include Linear 

programming (LP), Dynamic programming (DP) and numerous heuristic solvers that employ 

various evolutionary strategies that mimic the evolution and behaviour of biological systems.  

A comprehensive coverage of the state-of-the-art optimization solution strategies is provided 

by Rardin [1].  Although there have been numerous attempts to apply various solution strategies 

in reservoir optimization, there is no universally accepted tool among practitioners that can 

handle all existing complexities of modern water resources systems.  As documented by Ilich 

and Todorović in their recent literature review paper [2], only a small fraction of 2.5% of all 

publications have been applied to the real world in some way by the relevant reservoir 

management agencies.  Reliable runoff forecasts are quickly improving, using the satellite-

based data obtained through remote sensing and sophisticated algorithms that utilize various 

forms of machine learning and artificial intelligence [3].  The solution concept presented here 

is known as the Model Predictive Control (MPC) [4], and it relies on the combined use of runoff 

forecasts and mathematical optimization.  The process eliminates the need to use the “upper 

rule curves” on reservoirs, thus offering a compromise solution between hydropower producers 

and dam operators, since it does not require lowering the FRL over the entire wet season, but 

only during the flood events.  The emergence of this solution approach was foreseen long before 

the development of the internet and the currently available computer power by Yazicigil et al. 

[5], which later gained further momentum with the improvements in remote sensing and runoff 

forecasting technology, as boldly forecasted by Howard in his paper titled “Death to Rule 

Curves” [6].  Other early attempts include Wasimi et al. [7] who examined the short-term 

operation of multi-reservoir systems during floods to regulate reservoirs and minimize flood 

damage, while Karamouz et al. [8] developed a Bayesian stochastic dynamic programming 

model, incorporating forecast uncertainties and updating probabilities using Bayesian decision 

theory, which provided a robust framework for managing reservoirs under uncertain conditions. 
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Other researchers have explored optimization techniques such as genetic algorithms, which 

Merabtene et al. [9] utilized for drought risk management in water resource systems. Hsu et al. 

[10] developed a real-time flood control operation model specifically designed for typhoon-

induced floods, while Chang [11] implemented a penalty-type genetic algorithm for rational 

reservoir flood operation. Wei et al. [12] focused on real-time operations for flood control using 

the tree-based release rules.  Xu et al. [13] expanded on these advancements by proposing an 

integrated flood risk identification model for multi-reservoir systems, emphasizing forecast 

uncertainties.  

 

Most of the above publications focus on the importance of runoff forecasting skills, while the 

inclusion of complex flood routing constraints into mathematical optimization gets very limited 

attention.  Yet, this aspect of optimal flood operation is just as important as is the accuracy of 

the forecast, since the optimization program must include the differential equations of flow as 

constraints to optimization in order to properly account for flood propagation mechanisms.  

There is only a handful of tools that focus on modelling capabilities to generate globally optimal 

solutions such as the WEB.BM model used in this study [14], and their real-world applications 

are covered in a tiny fraction of the available literature [14, 2].  The principal reason is that most 

publications ignore the routing transformation as constraints embedded in dynamic 

optimization networks, especially when minimizing flood damage is not the only objective.  

This study aims to address the proper inclusion of difficult channel routing constraints within 

the multi-reservoir framework that could also be used within the multi-purpose operational 

framework [15]. 

  

This study uniquely integrates short-term runoff forecasting with real-time reservoir 

optimization, providing a seamless framework tested using historical flood events in the 

Damodar Basin. By incorporating dynamic channel routing transformations at 6-hour intervals 

into the optimization process, the study enhances operational accuracy and offers a scalable 

solution for multi-reservoir systems worldwide. The results demonstrate the effectiveness of 

pre-flood drawdowns enabled by optimization, significantly reducing peak flows and 

downstream flood risks. With advancements in remote sensing and real-time data acquisition 

systems, this approach modernizes reservoir operations to meet contemporary challenges. By 

combining predictive models with optimization, this research not only enhances flood resilience 

but also contributes to global efforts for sustainable water resource management.  

2 Study objectives and methodology 

The principal objective of this study is to verify the WEB.BM model capability to manage 

floods subject to the available short-term forecasts with 1, 2 or 3 days lead time by using the 

Damodar River Basin in India as a case study. The approach begins with data preparation, 

where historical inflow and outflow records for key reservoirs, including Tilaiya, Konar, 

Maithon, and Panchet, are collected.  The eventual use of the model in real-time will be based 

on the short-term runoff forecasts with 1, 2, and 3-day horizons generated using the runoff 

forecasting model based on weather forecasts and rainfall-runoff relationships established 

through calibrated hydrological simulations. The runoff forecasting model is still under 
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development [16].  The integrated model will be tested using real-time forecasts over the next 

three monsoon periods.  In the absence of real-time data, a hindcast approach is used in this 

study where historical daily data are interpolated into 6-hourly intervals assumed to be available 

much like the 6-hourly runoff forecasts will be available after the forthcoming integration. 

2.1 Hydrological channel routing 

Most hydrology textbooks explain hydrological channel routing as a transformation of inflow 

into a river channel into outflow by using the Muskingum linear model [17], while ignoring the 

fact that this model can only be calibrated for a single hydrological event of a specific and 

known magnitude by defining the routing coefficients that correspond to the average travel time 

a flow along a given river reach during the specific flood.  The problem is that the magnitude 

of future floods is not known, thus requiring a non-linear routing scheme where the routing 

coefficients are determined as a function of travel time, which is a function of the channel flow.  

An elegant solution to dynamic flood routing with coefficients that vary as a function of the 

channel flow has been around for over 50 years as defined by Williams [18], although often 

overlooked by the mainstream textbooks on hydrology.  The first significant application of the 

Williams routing equation was originally developed by the US Corps of Engineers, the Stream 

Synthesis And Reservoir Routing (SSARR) [19]. A major advantage of this model is that it 

does not need any channel geometry as input data, nor does it require Manning’s coefficients.  

Once the travel time vs flow relationship is available, the calibration consists of deciding how 

many sequential phases a given river reach should be divided into, which is conducted using 

repeated simulation trials until the observed downstream hydrograph closely matches the 

simulated channel outflow.    As with the other river routing methods, the governing equation 

is related to channel storage change over a time step, which is a function of average inflow and 

outflow: 

𝐼𝑡−1+𝐼𝑡

2
−

𝑂𝑡−1+𝑂𝑡

2
=

𝛥𝑆

𝑡
           (2)  

By subtracting both sides of the above equation with Ot-1, multiplying by t/(Ot-Ot-1) and by 

letting ∆S/(Ot-Ot-1) = TS, the above equation becomes: 

𝑂𝑡 =
[

𝐼𝑡−1+𝐼𝑡
2

−𝑂𝑡−1]⋅𝑡

𝑇𝑆+
𝑡

2

+ 𝑂𝑡−1     (3) 

where the term TS represents the average travel time along a river reach for given flow 

conditions, evaluated either by reading from the TS vs Q table or by using a functional form of 

the travel time vs flow curve as: 

𝑇𝑆 =
𝐾𝑡𝑠

(
𝑂𝑡−1+𝑂𝑡

2
)

𝑛      (4) 

The routing coefficients Kts and n must previously be determined by finding the best-fit curve 

for a given set of the available (TS, Q) coordinates.  In physical terms, Kts represents the length 

of the river reach, while the exponent n is related to the slope of the reach.   Alternatively, TS 
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can be determined for any given flow rate by linear interpolation from a table of (TS, Q) points 

obtained from observations.  In the above definition of TS, the base of the denominator: 

𝑂𝑡−1+𝑂𝑡

2
      (5) 

which is powered by exponent n that represents the estimate of the average outflow from a 

given reach during the time step t.  For sufficiently small time steps, the variations of flow are 

also small, so it is common to assume Ot-1 = Ot.  The model typically conducts two to three 

iterations by updating Ot and recalculating the travel Ts time by using the updated coefficients 

before it converges to the final solution.  Expression (5) can also be converted to the following 

form: 

𝑂𝑡 =
𝑡

2𝑇𝑠+𝑡
𝐼𝑡−1 +

𝑡

2𝑇𝑠+𝑡
𝐼𝑡 +

𝑇𝑠−𝑡 2⁄

𝑇𝑠+𝑡 2⁄
𝑂𝑡−1    (6) 

The above form is identical to the well-known Muskingum linear routing form: 

𝑂𝑡 = 𝐶1𝐼𝑡−1 + 𝐶2𝐼𝑡 + 𝐶3𝑂𝑡−1     (7) 

It can be noted that the SSARR routing coefficients listed in equation (6) sum up to 1 (i.e. 

C1+C2+C3 = 1), which is also the condition for the Muskingum routing coefficients.  In other 

words, the SSARR routing method uses an identical formula as does the Muskingum routing 

procedure, except that the values of the routing coefficients Ci are determined in a different 

way, which has some obvious advantages: 

• The only required information for the values of routing coefficients is the time of travel 

vs flow relationship for a given river reach and the length of the calculation time step.  

No other data related to the channel geometry, gradient or roughness are required. 

• The values of routing coefficients undergo dynamic adjustments as the modelling moves 

through different flow regimes between dry seasons and wet seasons, in a much more 

elegant and precise way than in the case of using the classical Muskingum method, 

which is used with fixed coefficients developed for a specific hydrological event. 

Implementations of the SSARR method may rely on different estimates of the average channel 

flow during a given time step.  Input data requirements include the time of travel versus the 

flow table for a river reach, where the time of travel is given in hours while flows are given in 

m3/s.  To ensure the numerical stability of this approach, the calculation time step is selected 

such that the travel time along the reach is at least more than twice the length of the calculation 

time step, i.e. Ts ≥ t/2.  If this condition is not satisfied, the routing coefficients that multiply It 

and It-1 become greater than 0.5, and the mass conservation rule which requires that the sum of 

all three coefficients be equal to 1 is no longer maintained.  Similar conditions exist in the 

classical Muskingum method.  Since the routed flows are not precisely known in advance, the 

SSARR routing method is iterative, requiring recalculation of the routing coefficients as a 

function of Qt at the end of each iteration until the convergence criteria are satisfied.  The 

WEB.BM model executes several repeated runs for each simulated time step by using the 

steady-state solution as the initial starting solution, which is then corrected for the effects of 
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routing from one iteration to another until the convergence criteria are fulfilled.  This approach 

is particularly useful when solving several time steps simultaneously since it moves the 

reservoir releases earlier in time in each iteration such that the effects of routing can be 

combined with the operational objectives. 

2.2 Mathematical definition of the problem 

If the optimization problem is defined using maximization of benefits in LP formulation, the 

pricing vector Pi associated with flood damage would have a negative sign for any flow that 

exceeds the full bank channel capacity, indicating that benefits would be maximized if the 

reservoirs could be operated such that the overbank spills are minimized or completely avoided 

if possible.  The objective function would be applicable for all time steps that are solved 

simultaneously, and for all river reaches that may be associated with the flood damage, which 

explains the double summation over both time (t) and space (i): 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑀𝑎𝑥 ∑ ∑ 𝑄𝑖,𝑡𝑃𝑖

𝑙

𝑖=1

𝑚

𝑡=1

 

                                                                               

(8) 

Subject to: 

∑ 𝐴𝑖𝑄𝑖

𝑚

𝑖=1

= 𝑏𝑛       ∀ 𝑖, 𝑛 ∈ 𝑁  
                                                                               

(9) 

0 ≤ 𝑄𝑖,𝑡 ≤ 𝑈𝑖,𝑡                             

0 ≤ 𝑄𝑖,𝑡 ≤ 𝑓(𝑄𝑘,𝑡)           ∀ 𝑖, 𝑡 

                                                                               

(10) 

Equation (9) represents the mass balance at network node n, with Ai representing the incidence 

matrix coefficient that is typically equal to either -1, 0 or 1, with -1 and 1 denoting the incoming 

and outgoing flows for network arcs that are associated with a given node n, while bn represents 

local inflow into node n, which is set to zero for nodes that have no tributary inflows.  Index i 

represents each link (also known as “arc”) in the network.  Expression (9) is applied to all nodes 

in the network. Furthermore, when solving multiple time step optimization, the mass balance 

equation (9) is applied to each node n in the network and to each time step t over the selected 

solution horizon.  Expression (10) represents the upper bound on flows, which can be either set 

to constants Ui,t  representing for example the maximum storage or canal capacity that should 

not be exceeded, or it can be defined as a function of flow in some other network component k, 

such as the channel flow relationship defined by the channel routing equation. 

2.3 Understanding the Weight Factors 

The purpose of the weight factors is to define the importance of allocating water to each model 

component, where some components may be broken down into several operating zones to 

enable the use of LP.  The conceptual use of weight factors is explained in Figure 1 which 

shows two reservoirs, three diversion canals and several river reaches. 
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Figure 1. Schematic representation of weight factors 

There are typically at least three operating zones associated with reservoirs, representing the 

dead storage zone, conservation zone, and flood storage zone, with their respective weight 

factors of 7000, 5 and -100 shown in Figure 1.  The mechanism of setting up and using these 

weight factor values is explained further below.  There is only one operational zone for a 

diversion canal that takes water out of storage, with its corresponding weight factor of 1500. 

The most downstream river reach for which flood protection needs to be implemented through 

optimal reservoir operation has two zones in the above example.  The zone with flow values up 

to 2850 m3/s has a weight factor of zero, while the flow zone that accepts any flows above 2850 

m3/s has a weight factor set to -9000.  Since the model uses maximization of the objective 

function, the high negative value signifies a highly undesirable condition of allocating flows to 

this zone.  Several important rules should be noted: 

• Each zone has a positive upper bound which is greater than the lower bound 

• Weight factors are assigned to each zone arbitrarily by the user 

• There is more than one set of weight factors that will give identical flow allocation 

The weight factors represent the importance of maintaining desired flow levels.  For example, 

the storage level should never drop below the Maximum Draw Down Level (MDDL), also 

known as the top of the dead storage zone, hence the high priority of 7000 applied for each unit 

of storage below MDDL.  One can think of the weight factor as the value of water in monetary 

units per m3 of storage in a particular zone, or better yet per m3/s of flow, since storage is 

internally converted to the units of flow by dividing the target storage with the length of the 

simulated time step.  For storage between MDDL and the Full Reservoir Level (FRL), the 

weight factor is only 5.  Since the objective is to maximize the product of flow allocated to each 

zone with its related weight factor, the model would allocate water from storage to the diversion 

canal where the weight factor is 1500, much larger than the priority of storing water in the 
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reservoir.  Hence, the final allocation in each time interval will take water from storage, where 

its value is only 5, to the diversion canal, where its value is 1500.  Diversion canals can be used 

to supply municipalities or irrigation.  The upper bound of the diversion canal may represent 

canal capacity, or it may represent water demand as is the case above, where the diversion limit 

set to 1.4 m3/s may correspond to the municipal demand in one particular time step.  It is easy 

to see that any solution that keeps the storage at FRL, meets the diversion requirement from the 

reservoir and keeps the downstream flow below 2850 m3/s is optimal, since it maximizes the 

value of the objective function. 

If the reservoir starts at FRL and the reservoir inflow is greater than 2850 plus the diversion 

target, the downstream channel will begin to spill, which marks the beginning of flooding.  The 

cost of flooding is very high (-9000 per m3/s, where the negative sign indicates a monetary loss 

per unit of flow above the threshold).  Consequently, the model would not flood the river valley 

right away, but would rather begin to fill the flood storage zone at the reservoir, which has a 

weight factor of -100.  This also represents a loss (reduction) to the value of the objective 

function which is to be maximized by -100 per unit of flow, but this loss is not as large as the 

loss of -9000 per unit of flow associated with spills at the downstream channel.  In other words, 

the model will first put extra inflow into the flood storage zone above FRL before allowing 

downstream channel spills.  When solved simultaneously for several 6-hourly periods, the 

model begins to release flows from storage (without violating the downstream limit of 2850 

m3/s) before the peak inflow arrives, thus increasing the flood storage zone dynamically on the 

basis of inflow forecast, starting storage levels and all other runoff forecast on the tributaries 

upstream of the critical river reach which is designated for flood protection. 

3 Case study -- development and results of modelling scenarios 

Figure 2 shows the current layout of the system, which ends before the bifurcation near 

Jamalpur.  It is felt that keeping the flows within full bank capacity at Jamalpur would be the 

best way for reservoirs to minimize the negative effects of downstream flooding.  The following 

labels are used in the schematic in Figure 2: 

 

• Blue lines represent natural water courses (river reaches and tributaries) 

• Blue coloured areas represent the surface water of the reservoirs created by dams 

• Red lines with arrowheads represent diversion canals 

• Green areas in square format represent irrigation blocks 

 

It should be noted that all reservoirs have flood storage zones, since their initial design included 

flood management as one of the operational objectives.  The remaining objectives are water 

supply to municipalities, industry and irrigation, along with the generation of power at Maithon, 

Panchet and Tilaiya dams with installed capacities of 60, 80 and 4 MW, respectively.  The 

intent of this modelling exercise was to investigate possible responses of the model to the 

known inflows assuming 1, 2 or 3-day inflow forecasts.  Three distinct historical floods from 

the historical years 2000, 2006 and 2009 were selected for this purpose.  Floods in 2000 and 

2006 were recorded in the second half of September, while the 2009 flood was recorded in 
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August.  Designation STO-1, STO-2 or STO-3 implies a solution based on the assumed runoff 

forecasting horizon of one, two or three days ahead.  The goal of the model is to find the best 

way to operate the four reservoirs to maintain the downstream flow at Jamalpur at or below 

2850 m3/s, which is its current full-bank capacity.  The model minimizes the deviations from 

this flood threshold when they are inevitable.  All model runs were executed assuming the 

starting storage is at the Full Reservoir Level (FRL).  The distance between Tilaiya and Maithon 

reservoirs along the river thalweg is subdivided into four sub-catchments, each one represented 

by two sequential river reaches and a tributary at the end of the reach.  The two river reaches 

are used to implement hydrological river routing depicted for some of them in Figure 2. 

 

 
Figure 2. Damodar River Basin modelling schematic 

Reservoir operation is aimed at minimizing flows above 2850 m3/s at the Jamalpur located at 

the downstream end of the system.  Finding the right reservoir releases is complicated by the 

transformation of flow caused by river routing processes on river reaches both upstream and 

downstream of the reservoirs, by the influx of flow from the tributaries and by reduction at 

diversion canals.  There is often a substantial local inflow downstream of the reservoirs which 

must be taken into account when setting the reservoir releases, along with all other constraints 

related to river routing throughout the river basin.  The starting reservoir levels were set to 

correspond to the full supply levels, which is the most conservative assumption.  From the three 

historical floods analyzed, the worst flood was in 2009, resulting in a mean daily maximum of 

7649 m3/s.  Assuming only 1-day runoff forecast, the model managed to lower the flood peak 

to 5500 m3/s at Durgapur and 5000 m3/s at Jamalpur.    

 

There is still some violation of the flow target of 2850 m3/s at Jamalpur with a 2-day forecast 

scenario for 2009 flood that reached 3517 m3/s as seen in Figure 4, but once the 3-day forecast 

is introduced the flood damage completely disappears, as shown in Figure 5. 
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Figure 3. Historical and simulated 2009 flood at Durgapur Barrage, 1-day forecast 

 
Figure 4. Historical and simulated 2009 flood at Durgapur Barrage, 2-day forecast 

 
Figure 5. Historical and simulated 2009 flood at Durgapur Barrage, 3-day forecast 

The above improvements are possible by initiating pre-flood drawdown by the model which 

results from the use of optimization within the multiple time step solution framework.  The 

longer the forecast, the larger the pre-flood drawdown.  Figure 6 shows the Maithon reservoir 

levels for all three scenarios (1, 2 and 3-day forecasts). A similar trend can be observed with 

the Panchet Reservoir levels in the three scenarios for the 2009 flood, as shown in Figure 7.  

Figures 8 and 9 show the 2006 flood at Durgapur and Jamalpur for 1 and 2-day forecasts.  In 

this case, the 2-day forecast only marginally exceeds the flood threshold, while the 2000 flood 

could have been handled with a single-day forecast, as shown in Figure 10. Given that the 

tributary inflows and diversions are subject to fluctuations, the reservoir releases also show 

fluctuations. This results in the plots of the time series of reservoir elevations that do not look 
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smooth, as seen in Figures 6 and 7.  However, this is an expected result from combining all 

available variables and routing transformations that must be included in the model.   

 

 

 

 

 

 

 

 

 

 

4 Conclusions and Recommendations 

The numerical tests presented above are based on hindcast historical inflows available for 1, 2 

or 3 days ahead.  The model shows significant improvements compared to historical operations 

as a function of the length of the forecasting horizon.  The ability to simultaneously balance 

multiple reservoirs based on their unique inflow hydrographs and common downstream 

objectives to minimize flood damage can be significant in large river basins with multiple 

reservoirs, showing a reduction of around 50 percent compared to the historically recorded peak 

flows at Durgapur Barrage.  The use of forecasting models should be verified in real-time by 

taking advantage of the RTDAS connected to the existing SCADA systems.  The work 

presented here shows that one of the two key components of automated reservoir operation is 

readily available and available for testing using historical data.  Future tests should involve the 

use of real-time data along with testing its integration with the runoff forecasting models. 

Figure 6. Maithon storage, 2009 flood, 1,2 and 3-day forecasts Figure 7. Panchet storage, 2009 flood, 1,2 and 3-day forecasts 

Figure 8. 2006 flood at Durgapur Barrage, 1-day forecast Figure 9. 2006 flood at Durgapur Barrage, 2-day forecast 

Figure 10. 2000 flood at Durgapur Barrage, 1-day forecast 
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