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REVIEW

Practical applicability of mathematical optimization for reservoir operation and river 
basin management: a state-of-the-art review
Nesa Ilich a and Andrijana Todorović b

aPrincipal Optimal Solutions Ltd, Calgary, Alberta, Canada; bFaculty of Civil Engineering, Institute for Hydraulic and Environmental Engineering, 
University of Belgrade, Belgrade, Serbia

ABSTRACT
The sheer number of publications that deal with the topic of optimizing the management of river basins 
has grown exponentially since the early 1980s, and this growth is still on the rise. Despite this, the 
practical actions of most reservoir operators are still based on their gut feelings, or at best on straightfor
ward rules that did not originate from rigorous scientific studies but are rather the result of the operator’s 
experience or simple spreadsheet calculations. Many publications have already pointed out the gap 
between theory and practice over the past few decades; however, none have so far offered clear 
guidelines on how to overcome this gap. This paper presents an extensive literature review to examine 
potential reasons for this gap. In addition to this, a numerical test problem demonstrates a novel way of 
using linear programming for constructing Pareto-optimal solutions for a large class of multi-objective 
optimization problems.
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1 Introduction

1.1 Challenges in river basin management

The complexity of managing modern river basins has led to 
various applications of systems analysis techniques, which 
were defined by Rogers and Fiering (1986, p. 146S) as a “set 
of mathematical planning and design techniques which at 
least include some formal optimization procedure.” In this 
context, optimization is understood as a process of selecting 
one or more solutions that have superior qualities in terms of 
management objectives compared to other arbitrarily 
selected solutions, while they are also feasible concerning 
the physical and operational constraints. In recent decades, 
much of the discussion has focused on the issue of defining 
objectives, while the treatment of constraints seems to have 
taken a back seat.

In their discussion about the future of the science of water 
resources systems analysis, Brown et al. (2015) made 
a distinction between its use for (a) planning studies related 
to water policy; (b) addressing trade-offs among multiple 
objectives; (c) water resources operations; and (d) the water 
distribution systems related primarily to design and operation 
of pressurized water supply networks, which are outside of the 
scope of this paper. In essence, the use of a scientific approach 
should help generate better river basin management plans and 
assist with their implementation in real time, assuming the 
required input data are also available in real time. This should 
emphasize the link between (a) and (c), since planning studies 
are de facto conducted to gain insight into river basin opera
tion under various changing conditions that may involve 
structural changes or changes in hydrological conditions.

The term river basin management is often interchanged with 
terms like reservoir management or reservoir operation, due to 
a sizeable overlap in their functionality. Indeed, reservoirs are 
indispensable for sustainable river basin management, since 
they store water during high runoff to help reduce or eliminate 
deficits at times of shortage. Without reservoirs, the notion of 
river basin management may be reduced to controlling sedi
ment erosion or the concentration of pollutants at the source, 
but the natural flow regime with its wild swings between floods 
and droughts would remain unchanged. Reservoirs should be 
managed optimally for all of their intended and often conflicting 
goals, which may include water supply for domestic or indus
trial purposes, irrigation, environmental maintenance flows, or 
power generation. In general, the operational goals are to help 
minimize flood damage and reduce the duration and magnitude 
of water shortages. These goals require resolutions at different 
time scales that range from hourly for flood events up to 
monthly for drought management, requiring different problem 
definitions and solution strategies (Labadie 2004, Rani and 
Moreira 2010, Azad et al. 2020). Therefore, improved operation 
of the existing reservoirs is as important as is optimal design of 
new reservoirs, and advancing the state of the art in the area of 
reservoir operation represents an area of active research 
(Dobson et al. 2019). This is supported by the fact that there is 
presently a large number of publications that deal with the topic 
of reservoir operation that has grown exponentially since the 
early 1980s, and this growth is still persistent, as shown in Fig. 1.

The sheer volume of the models investigated by the 
researchers poses the question of their applicability in river 
basin management and operation. If used as planning tools, 
they should help generate reservoir operating rules and water 
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rationing policies as integral parts of river basin plans. If used 
as operational tools in combination with runoff forecasts, they 
should suggest the best set of reservoir releases subject to the 
basin conditions and runoff forecast. Given the above, the 
principal question addressed in this paper can be formulated 
as follows: “How do the numerous publications related to 
reservoir optimization help the basin managers and reservoir 
operators?” The paper proceeds as follows: Section 2 gives 
a historical background related to the use of optimization in 
water resources, with a particular emphasis on the problem 
definition and relevant constraints, including some observa
tions related to the widespread use of multi-objective optimi
zation. Section 3 explains the current operators’ practices, 
while Section 4 provides a statistical summary of a survey of 
selected papers, particularly concerning the inclusion of the 
constraints that are considered important based on the pre
viously outlined problem definition. As an example of the 
importance of one of the highlighted constraints in the survey 
in the previous section, Section 5 provides a numerical exam
ple that demonstrates the importance of the reservoir outflow 
constraints that are equally applicable to single and multiple 
objective optimization, while Section 6 gives conclusions and 
recommendations.

2 Problem definitions and historical background

We define the term “model” as a representation of reality. In 
the case of river basin models, we typically refer to 
a mathematical representation of reality encapsulated in the 
form of mathematical algorithms and a computer program 
that mimics decision making processes, acting as a “crystal 
ball on the table” for river basin managers and reservoir 
operators. Since the real world is inherently very complex, 
models invariably involve some level of simplification of rea
lity. However, a properly designed model should have 
a sufficient level of complexity to include all important aspects 
of reality, without being cluttered with too many unnecessary 
details, which may lead the modelling practitioners to 
a situation where they “cannot see the forest for the trees.”

The most basic distinctions among models are between simu
lation and optimization models. Rogers and Fiering (1986) define 

simulation models as “descriptive techniques” that imply the 
application of “what-if” rules that are triggered by the storage 
levels, inflows, and demands evaluated individually in each simu
lated time step. These models do not define the best releases over 
a simulated period, but are rather aimed to derive releases by 
following a set of prescribed rules. A historical example is the 
Hydrologic Engineering Centre (HEC-5) model, which was even
tually renamed HEC-ResSIM (US Corps of Engineers 2024), one 
of the few public domain models among its several well-known 
commercial counterparts such as RIBASIM (DeltaRes 2024a) or 
Mike Hydro Basin (Danish Hydraulic Institute 2024).

Originally developed for single reservoir systems, the use of 
“what-if” rules became difficult to implement even for single- 
time-step solutions, in the case of river basins with multiple 
reservoirs and moderately complex network configurations. 
Consequently, the problem of water allocation based on pre
scribed rules was facilitated by the use of optimization algo
rithms, although they were guaranteed to find the best 
solutions that followed for individual time steps, without tak
ing into account the consequences of the current time step 
solutions for the system performance in subsequent time steps. 
Representatives of these improved simulation models with 
built-in optimization algorithms to assist with water allocation 
in single time steps include MODSIM (Labadie et al. 1986), 
Water Evaluation Assessment Program (WEAP) (Yates et al.  
2005), Resource Allocation Model (REALM) (Victoria State 
Government 2024) and AQUATOOL (Andreu et al. 1996), 
and they are all typically based on simplified linear program
ming (LP) solvers known as network flow algorithms 
(Bertsekas and Tseng 1988), except for the WEAP model, 
which uses a full LP solver that allows more versatile repre
sentation of constraints. The choice of LP was driven by several 
factors, such as multiple publicly available solver libraries, fast 
execution times and the guarantee of finding the global opti
mum (albeit for individual time steps), along with the fact that 
water rationing rules were easy to formulate as LPs.

The use of LP solvers to model a sequence of individual 
time step decisions is referred to as simulation-optimization 
modelling by some authors, such as Fayaed et al. (2013) in 
their review paper on reservoir system management techni
ques. They differentiate simulation-optimization models from 

Figure 1. The number of publications with “reservoir operation” search terms in the title, abstract, or keywords. Obtained from the SCOPUS database on 
29 December 2023.
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full reservoir optimization models by their ability to find the 
best set of releases over a specified period T which involves 
multiple time steps t (t = 1,T), usually referred to as “multi- 
period” or “multiple time step” optimization, where the reser
voir releases made in one time step have consequences that are 
felt two or more time steps later at critical downstream loca
tions, after they have been modified by the effects of hydro
logical routing and additional influx from tributaries or 
diversions at water intake structures (Fig. 2).

The same physical system is repeated in Fig. 2 for three con
secutive time steps in the left to right direction for demonstration 
purposes. Releases made in the first time step undergo hydrologi
cal routing transformation as they propagate downstream. This 
transformation should be modelled as a non-linear constraint for 
daily or hourly time steps when the travel time through the entire 
system is longer than the calculation time steps, since storage 
releases need time to reach the critical downstream locations. 
This link cannot be modelled directly with simulation models 
since they only model individual time steps. The effects of travel 
time and hydrological channel attenuation are typically ignored in 
most publications by authors who enthusiastically devote a lot of 
space to explain the heuristic solution algorithms to which they 
ascribe real-time optimization capabilities for managing floods or 
hydropower operation, without mentioning the need for proper 
inclusion of hydrological channel routing as constraints into 
optimization. A typical hydrological routing equation is: 

While the above equation has the form of the well-known 
Muskingum equation, it should be noted that continuous model
ling that includes a variation of channel flows cannot be repre
sented properly using fixed routing coefficients that are 
determined for a single event using the Muskingum method 
(Ponce and Yevjevich 1978). Rather, the routing coefficients 
change with the change of flows which determine the travel 
times through a river reach. It is interesting to note that the full 
definition of the reservoir operation problem using the LP 

formulation was given five decades ago by Windsor (1973), 
whose initial formulation was made for a single time step, and 
later extended to a multiple-time-step solution framework by 
Yazicigil et al. (1983) and Needham et al. (2000). Ignoring the 
hydrological routing constraints given by Equation (1) is possible 
when conducting a river basin planning study that is focused on 
drought management, where a weekly time step may justify the 
steady-state assumptions if the travel time along the entire river 
basin is on the order of 4 to 5 days. This usually restricts the size of 
the basins being modelled to less than 400 km in total length. 
Despite the huge volume of papers that cover heuristics search 
engines and dynamic programming (DP) (Macian‐Sorribes and 
Pulido‐Velazquez 2020, Krit et al. 2023), the only commercially 
available models that were identified as capable of including 
channel routing as constraints in multiple time step optimization 
are RTC (DeltaRes 2024b); RTO (Kisters 2024); and Web Basin 
Management (WEB.BM) (Ilich 2021; Ilich and Basistha 2024), 
and these models rely on classical LP or non-LP solution algo
rithms. Hydrological routing is required for modelling with time 
steps that are daily or shorter, since the size of a typical river basin 
involves travel time throughout the basin (i.e. time of concentra
tion) that is usually much longer than 1 day. Real-time operation 
or planning studies that examine reservoir operation during 
floods require the use of daily (or shorter) time steps, while studies 
that focus on managing droughts typically use weekly, 10-daily or 
monthly calculation time steps and they do not require channel 
routing transformation.

In terms of the options related to hydrological inputs, Fayaed 
et al. (2013) provide a clear distinction between deterministic and 
stochastic optimization, as well as the differences between implicit 
and explicit stochastic optimization. The need to resort to stochas
tic functions is driven by the lack of reservoir inflow series of 
sufficient length. Implicit stochastic optimization implies the 
development of stochastic time series of hydrological variables, 
such as inflows and precipitation as representative flow series that 
can portray various future runoff conditions, which are then fed to 
the optimization models as input data. Conceptually, this solution 
strategy is not different from using the historical time series of 
inflows as input. Assuming that water allocation provides benefits 
to all stakeholders and that the specified period of known inflows 
T covers the entire simulated period, the objective function can be 
generally defined as: 

where β represents the benefit function associated with the 
ending storage st and the end of each simulated time step 
t and the average regulated flows rt that represents allocation 
released to various stakeholders in each time step t. The above 
maximization problem is subject to the following constraints.

Mass balance constraints for every node in the network 
have the following general form: 

where qi and rj represent average inflow and outflow from 
a node via their respective channels i and j, while the loss Figure 2. Schematic representation.
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term may represent losses with index k that may be related to 
losses due to net evaporation or seepage in time step t. If there 
is no storage for a particular junction or diversion node, the 
above equation is still applicable except that the storage terms 
st and st+1 are set to zero. Storage constraints typically require 
definitions of the minimum and maximum operating levels 
which can also be temporal variables: 

where the minimum and maximum storage may be defined in 
general as a function of time throughout the year as opera
tional constraints that require modification of the minimum 
and maximum allowable limits.

Losses can be related to canal losses or losses to net eva
poration from the surface water area of reservoirs, which 
should be calculated using the following formula: 

where et and pt are respectively evaporation and precipitation 
on the surface area A of the reservoir over a time step t, while 
At and At+1 are the water surface areas at the start and the end 
of time step t. Net evaporation is the difference between 
evaporation and precipitation in time step t. This implies 
that in some time intervals during rainy seasons the losses 
due to net evaporation can be negative, since the value of 
precipitation may exceed the value of evaporation. Although 
correctly defined, the above loss function is rarely used in this 
form. It is usually either completely ignored, or if it is used it is 
defined as evaporation, not as net evaporation, thus ignoring 
the precipitation directly on the water surface area.

2.1 Reservoir release constraint

In most published studies flow releases rt are restricted by the 
constant upper levels determined either by the target water 
demands or by the installed capacity of the turbines if the 
releases are made to generate hydropower, using Equation (6): 

where the lower release levels may be required as the minimum 
maintenance flows. The above relationship is the most com
mon way of modelling the upper limits on channel flows, 
which is problematic for reservoir outflows since it ignores 
the physical relationship between the maximum outflow and 
the available storage given by the outflow vs elevation curves 
that can be associated with bottom outlets, spillways or tur
bines. In each instance the maximum flow rmax,t may be 
reduced from its constant value to a value that corresponds 
to the average storage over the time step t based on the outflow 
vs storage relationship which exists for all physical outlet 
structures. The correct formulation of the above constraint is: 

where the function Qmax(s) refers to the maximum outflow as 
a function of the available storage s based on the outflow vs 
storage curve. This constraint is almost routinely ignored 

when modelling hydropower generation, implying that the 
assumed outflow through the turbines can always reach the 
installed turbine flow capacity regardless of the storage levels, 
which may lead to gross errors in time intervals when the 
reservoir storage is low. The outflow limit constraints for the 
bottom outlet and spillway are demonstrated in Fig. 3 using 
the example of Dickson Dam in the Province of Alberta, 
Canada. The use of LP solvers requires piece-wise linearization 
of the maximum outflow vs storage function, and also the 
introduction of binary variables, as detailed by Needham 
et al. (2000) and Ilich (2008), who defined the need to use 
mixed-integer linear programs by advanced modelling tools 
such as WEAP (Yates et al. 2005), OASIS (Randall et al. 1997) 
and RiverWare (Zagona et al. 2001), or WEB.BM (Ilich 2021). 
The importance of proper modelling of the outflow constraints 
as a dynamic function of storage is demonstrated in the 
numerical example provided in Section 5.

The curve in Fig. 3 shows a very low outflow capacity of the 
bottom outlet compared to the spillway. If the modellers ignore 
this relationship, their models would allow the release of any 
amount of flow regardless of the storage level. For example, if the 
modelling goal was to manage a large incoming flood, the model 
could release 900 m3/s (which corresponds to the full bank 
downstream channel capacity) for 2 or 3 days before the arrival 
of the incoming flood peak, thus reducing the storage signifi
cantly and creating comfortable extra storage for flood protec
tion. Yet it is obvious from the graph in Fig. 3 that such an 
operation would not be physically possible, given that the max
imum release from storage is severely restricted if the level drops 
below 941 m. Also, when reservoir levels are below 930 m, the 
bottom outlet capacity may be insufficient to meet downstream 
demands. Ignoring the outflow capacity constraint would allow 
the reservoir to route the sufficient from other upstream reser
voirs to satisfy water demands which may exceed the outflow 
capacity, without ensuring that there is sufficient storage volume 
to make the desired releases physically possible. Hence, addres
sing constraints of this kind is important to make sure that the 
model solutions are meaningful and acceptable to the reservoir 
operators. It should also be noted that this constraint is valid for 
any length of time step, from hourly to monthly.

Some other operational constraints can and should be 
modelled as hard constraints, since their violation would 
have legal implications. Those include for example the annual 
diversion volume licence limits, which cannot be exceeded 
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during an irrigation season, or the apportionment agreements 
between bordering states or provinces, which are usually asso
ciated with a combination of instantaneous minimum flow at 
the border crossing and the target volume requirement that 
needs to be passed to the downstream jurisdiction over 
a specified time period.

A computer modelling tool that can successfully solve the 
above reservoir optimization problem with all relevant real- 
world constraints would certainly be of assistance to reservoir 
operators, especially if there was also a reliable runoff forecast
ing tool that could provide real-time runoff forecasts as 
updated daily model inputs. This should be the ultimate goal 
of the model development. Given that perfect runoff forecasts 
for periods of up to 5 days are not yet available, the focus of the 
modelling community should be to improve the planning 
studies to develop reservoir operating guidelines that should 
aid the reservoir operators.

2.2 Disadvantages of using monthly time steps

Most publications available in the literature rely on the use of 
monthly calculation time steps, without making an effort to 
evaluate the disadvantages of this approach. The monthly 
hydrograph consists of the mean daily flows averaged over 
a month. Monthly averages are close to daily flows only during 
dry seasons, which are characterized by low fluctuation of daily 
flows. However, using monthly calculations during high-flow 
seasons leads to gross misrepresentation of daily flows, as can 
be seen in Fig. 4 which compares daily and monthly natural 
flows at the Smoky River in Northern Alberta (Water Survey of 
Canada 2024).

It is well understood that the use of mean monthly flows is 
not suitable for studying reservoir operation during floods. 
Compared to monthly time steps, modelling daily time steps 
would certainly require different storage drawdowns to ensure 
minimizing unnecessary spills that bypass turbines. Studies 
that focus on the impacts of the time step length (daily, weekly 
or monthly) require comparisons of the model outputs where 
all other model inputs are the same except for the time step 
length. Such studies are missing in the literature. Ideally, for 
steady-state calculations, the calculation time step length 
should be longer than the travel time through the entire river 

basin by a factor of 2 or more, to ensure that most of the release 
from the upstream reservoirs can reach the most downstream 
components within the same time interval. This is often vio
lated in many studies where daily time step is used on river 
basins with the total travel time through the basin of several 
days. Optimization models rely on a basic premise that reser
voir releases are demand-driven. Since most basins have travel 
times longer than one day, this premise requires solving multi
ple time steps simultaneously for daily time steps, as shown in 
Fig. 1, such that the release decisions can reach intended 
downstream demands after more than one day of travel time. 
The model should therefore be able to determine both the 
timing of the releases and their quantities to reach the desig
nated downstream users while accounting for all hydrological 
transformations along the way.

2.3 Previous review papers and the current state-of-the- 
art related publications

Most of the early attempts to utilize the results of optimization 
used monthly time steps to develop a regression that would 
provide forecasts of the reservoir levels at the end of the 
month based on starting storage and anticipated monthly inflow 
(Young 1967). Since regression can sometimes result in out
comes that are outside of the expected range, Karamouz and 
Houck (1982) introduced an additional correction factor to 
keep the results of the regression within an anticipated range, 
while Willis et al. (1984) developed a probability density func
tion of optimal releases based on selected state variables and 
statistical analyses of the output of implicit stochastic optimiza
tion. It should be noted that these attempts relied on monthly 
optimization results that also ignored the reservoir outflow 
constraints. Attempts were also made to use artificial neural 
networks (ANNs) to derive operating rules from the results of 
stochastic optimization (Raman and Chandramouli 1996, 
Chandramouli and Deka 2005, Farias et al. 2006). In general, 
in both the regression and the ANN-based models the releases 
obtained by the optimization model are related to reservoir 
storage at the end of the previous (typically monthly) time 
steps, and inflow during the current time step. There are several 
issues when attempting to apply this approach in real time: (a) 
monthly runoff forecast is not available with sufficient certainty; 
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(b) monthly forecast implies fixed monthly flows, which does 
not correspond to reality; (c) reservoir releases determined by 
regression will likely not match the current downstream 
demands; and (d) reservoir releases determined in this way 
may not be physically possible due to the limitations imposed 
by the outflow vs elevation curve, although the constraint that 
defines maximum outflow as a function of storage is found in 
some attempts to apply adaptive neuro-fuzzy systems to reser
voir operation (Mousavi et al. 2007, Mehta and Jain 2009), or in 
the attempts to introduce parametric simulation-optimization 
(Koutsoyiannis and Economou 2003).

While the popular models that have tens of thousands of 
users rely on LP (e.g. MODSIM, WEAP, RiverWare), the 
authors of many recent review papers hardly take any notice 
of them in their reviews (Kumar and Yadav 2022, Lai et al.  
2022, Kangrang et al. 2023). Instead, the focus is on “popular” 
models based on heuristic search engines, while the modelling 
objectives have shifted to “the search for an optimal policy” 
rather than the search for the best model solution, implying 
a strong shift to multi-objective optimization under the pretext 
that the river basin managers can no longer define their man
agement objectives, so they have to rely on the multi-objective 
optimization models to help them improve the understanding 
of their priorities. The emphasis has moved from finding the 
best reservoir releases for a given set of inputs to finding the 
solutions that are “good enough,” that are non-dominated, 
“equally optimal” or “Pareto-optimal” with respect to two or 
more operational goals. The number of publications that cover 
multi-objective programming has been rising faster than the 
classical multi-purpose optimization papers, such that some 
recent review papers completely ignore the classical optimiza
tion techniques (Lai et al. 2022). This is all happening in spite 
of many reports that practitioners are having difficulties 
understanding the results and finding meaningful ways to 
apply them in practice (Castelvecci 2016, Quinn et al. 2019). 
A reservoir operator needs guidance on how much water to 
release on a daily basis. Offering 100 or more Pareto-optimal 
solutions instead for multi-year model runs provides a huge 
amount of data which is difficult to convert to a practical 
operating guideline. While the gap between theory and prac
tice has existed for decades (Simonovic 1992), the increasing 
multitude of papers that utilize multi-objective programming 
has done nothing to close it. On the contrary, the principal 
reason for this is the introduction of the idea that reservoir 
operating rules are difficult to define explicitly due to conflict
ing objectives among various stakeholders, often driven by the 
fact that some objectives, such as environmental flow targets, 
cannot be defined using typical economic value functions, 
while fitting them into the existing priority chain is routinely 
questioned by other water users. In essence, this introduced 
the need to redefine the objective function by removing the 
explicit priority of one stakeholder over another, and rather 
defining objectives by using system-wide parameters, such as 
reliability or shortage index, vulnerability, the highest water 
shortage, or the frequency of water shortage as measures that 
are applied evenly on all types of water use (Krit et al. 2023). 
There is a prevailing attitude in the recent literature that 
reservoir operation is a “wicked” problem (Mamatova et al.  
2016, Wu et al. 2023). However, for most real-world reservoir 

operators, the rules are clear, and the allocation priorities are 
defined by the governing water management committees 
which are also staffed by stakeholders. Allocation policies are 
based on either the legal priorities arising from the water 
licensing system, as is the case in North America, or a mix of 
economic and political objectives, and often as an agreed 
combination of both. In most river basins around the world, 
the sum of municipal and industrial water use constitutes 
a small fraction of the total irrigation water use. 
Consequently, any form of equal deficit sharing between the 
two would not make much sense, since shorting municipal 
supply would not help the irrigators in any meaningful way, 
while it would enrage the urban population. Furthermore, 
reducing flood damage should not be a priority available for 
a trade-off with any other objective, especially for basins that 
have early flood warning systems, in spite of the fact that many 
researchers are keen to use multi-objective optimization in an 
effort to find a compromise between reducing flood damage 
and reducing the loss of hydropower generated during floods 
(Moridi and Yazdi 2017). It is not clear that there has to be any 
loss in hydropower during floods, especially since most larger 
basins have flood warning systems which cause the operators 
to lower the reservoir storage prior to the arrival of the flood 
peak flow. When such pre-flood drawdown is achieved by 
releasing water through the turbines so as to minimize spills, 
it is only a matter of the available lead times and the capacity of 
the turbines that determines the best operation that maximizes 
both benefits (reduction of flood damage and maximization of 
hydropower), as demonstrated by Ilich and Basistha (2024) in 
their recent work. In addition to the questionable compromise 
between these goals, a large number of publications still enter
tain this topic, sometimes using the monthly calculation time 
steps to model floods, as is the case with the work of 
Hatamkhani et al. (2021), while simultaneously ignoring the 
important reservoir outflow constraints for hydropower, 
which should be modelled as a dynamic function of storage 
as defined by Equation (7).

Other conflicting objectives that are usually modelled in 
various studies may involve maximizing hydropower and 
maximizing irrigation; however, most reservoirs are built 
with one of those objectives as its primary purpose which 
completely dominates the secondary purpose. One issue that 
may justify using a multi-objective optimization approach is 
the environmental river maintenance flows, which have 
emerged as a more recent target, long after many reservoirs 
had been constructed. In the past, water quality studies have 
been conducted to determine biological minimum flows that 
were then used as target in-stream maintenance flows in river 
basin models, thus creating two steps in the modelling process 
which separated modelling of water quality and quantity. 
Multi-objective optimization has managed to creep into this 
area as well, postulating the importance of modelling to deter
mine reservoir releases via multiple outlets located at different 
elevations. Examples of such studies are available from 
Karamouz et al. (2011) and Aghasian et al. (2019), although 
they also use monthly calculation time steps which are not 
adequate for representing downstream river flows, and ignore 
the reservoir outflow constraints, which should be of impor
tance given multiple outflows with various outflow elevations 
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and reservoir storage that may vary significantly during 
the year, thus affecting the dynamic outflow capacity of each 
outlet. The purpose of multi-objective programming would be 
to find a suitable way of fitting the priority of environmental 
flows among other water allocation priorities such that the 
final choice of priority is acceptable to all stakeholders. This 
case is used to compare the basic ideas related to multi-objec
tive optimization with the regular definition of mathematical 
programming to try to identify the intersection between the 
two. Simonovic (2008) provides a more detailed coverage of 
multi-objective optimization. To ensure discussion, the left 
side of Fig. 5 shows a typical graph used to define the so-called 
non-dominated or Pareto-optimal solutions related to objec
tives 1 and 2. The short straight lines that limit the solutions on 
both axes show the maximum possible performance where all 
demands are met for one objective at the expense of the other 
objective. The solutions located in the middle range are not 
dominated by either of the two objectives, so they are referred 
to as a non-dominated or Pareto-optimal set. It is important to 
note that each solution in this set consists of a time series of 
regulated flows and reservoir levels over a multi-year simu
lated period. The performance evaluation for each non-domi
nated solution presented in Fig. 5 is therefore a formidable 
task, and yet the proponents of multi-objective programming 
advocate evaluation of a selected set of those solutions, 
although there are no clear guidelines on how such a set should 
be selected.

Since the heuristic algorithms progress in their search by 
recombination of a group of solutions, they are more suitable 
for multi-objective programming. The schematic presentation 
of selected non-dominated solutions can be compared with the 
case of having multiple optimal solutions in the classical defi
nition of mathematical programming displayed on the right 
side of Fig. 5. The objective function for a linear program with 
two variables is defined as: 

where the parameters Ci are weight factors that represent opera
tional priorities. For instances where C2 > C1, the optimal 
solution will be selected at the intersection of line a with the 
feasible region shown on the right side of Fig. 5, while for 
instances where C1 > C2, the best solution will be selected at 

the intersection of line b with the feasible region. The case where 
C1 = C2 creates a solution where any point on the edge of the 
feasible region that overlaps with line c is equally optimal. 
Within the operations research community at large, this 
would be considered a “poorly defined optimization problem” 
since it has an infinite number of equally optimal solutions. In 
contrast, in the community of water resources practitioners, this 
problem definition is celebrated through the practice of multi- 
objective optimization. Although LP derives only a single solu
tion, some researchers, like Rozos (2019), went through pains
taking sensitivity analyses to determine the values of weight 
factors C1 and C2 with minute differences until they found 
solutions that are different in terms of the values of X1 and X2, 
by using two different network flow models (MODSIM and 
HEC-ResPRM) such that the values of their objective functions 
are the same on the first three decimals, thus trying to mimic the 
instance of finding different solutions that are equally optimal. It 
should be noted, however, that it is possible to fix a desirable 
solution out of many equally optimal solutions by introducing 
additional constraints in the following form: 

where U1 and U2 are the upper bounds (water demands). If 
factor α = 1, this constraint ensures an equal relative deficit 
between the two objectives to maximize X1 and X2, thus 
ensuring that both objectives receive equitable allocation by 
making their relative deficits equal. Other values of factor α 
would result in different sharing policies between X1 and X2, 
for example 40/60, 30/70, or 60/40 and 70/30, expressed as 
a percentage of the total demand, where U1 and U2 represent 
the total demands.

With a few exceptions, such as Rozos (2019), the use of LP in 
multi-objective optimization seems to be of no interest to 
researchers, precisely because it ends up finding a single solu
tion. Rather, most multi-objective publications rely on the use of 
heuristic solvers. There is currently a plethora of (meta)heuristic 
optimizers available, and none of them has been proven super
ior over the others, which motivates the scientific community to 
continuously evaluate their performance and put in efforts to 
enhance them (Maier et al. 2014). These efforts have gone in two 
directions: to develop combinations of several optimization 

Figure 5. Conceptual comparison of multi-objective and classical optimization.
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algorithms that complement each other (Beiranvand and 
Ashofteh 2023), or to develop algorithms based on adaptive 
operator selection (Reed and Hadka 2015), where the level of 
an operator application (i.e. the share of the population being 
optimized) is allocated to each algorithm separately depending 
on its performance in previous generations, as proposed by 
Hadka and Reed (2015). Most (meta)heuristic optimization 
algorithms can be implemented for both single- and multi- 
objective problems (Dobson et al. 2019). The multi-objective 
problems can be solved either by converting them into single- 
objective where some objectives are treated as soft constraints, 
or by simultaneous multi-objective optimization that yields 
numerous non-dominated solutions. As for the former, it can 
be achieved by scaling and aggregating multiple non-commen
surable objectives into a single objective (e.g. by implementing 
a weighting scheme), by monetizing potential benefits from the 
reservoir operation, or by implementing goal programming 
techniques that reduce multi-objective into a series of single- 
objective optimizations (Wu et al. 2023). Many researchers 
acknowledge that multi-dimensional Pareto fronts are rather 
challenging to communicate to stakeholders (Wu et al. 2023). 
Therefore, a final solution is adopted by further analysing sev
eral Pareto-optimal ones. While there is no doubt that this 
approach has gained popularity in academic circles (Giuliani 
et al. 2014, Beiranvand and Ashofteh 2023), it is difficult to find 
examples of the application of these results in real time among 
reservoir operators. The rise of multi-objective optimization vs 
multi-purpose optimization has also shifted the scientific com
munity in a new direction, where every stakeholder is treated as 
equal (the basic assumption being that they cannot agree on 
mutually acceptable water rationing policies), while the existing 
water licensing systems as well as the existing operating prio
rities in many river basins already have established priorities 
that are unlikely to change during the lifetime of the existing 
infrastructure.

3 Links between the results of optimization and the 
current practices of basin managers

Reservoir operation is currently driven by the judgement of the 
operators and the use of rule curves where available. 
Understanding of the rule curve concept may vary among 
water management agencies and reservoir operators, which 
justifies a quick review of its origin and purpose.

According to Dobson et al. (2019), reservoirs can be operated 
based on the standard operating policy (SOP), based on rule 
curves, or by using real-time optimization. The standard oper
ating policy proposed by Bower et al. (1962) implies that all 
users’ demands are met provided there is a sufficient amount of 
water in the reservoir, without taking into consideration future 
supply/demand conditions, i.e. without hedging of water 
demands that would reduce current supplies to reduce future 
deficits (Neelakantan and Sasireka 2015). As such, the SOP 
often results in premature emptying of the reservoirs (Spiliotis 
et al. 2016). This led to the development of rule curves, which 
typically consist of the upper and lower curve (Fig. 6). The 
upper rule curve, also referred to as the flood-limited water 
level in some publications (Jain et al. 2023), is typically shaped 
by the probable maximum flood studies and it involves 

mandatory drawdown during the time of the year when large 
floods are likely to occur, to increase the flood storage zone and 
prevent overtopping of the dam (El Harraki et al. 2021). To 
avoid shortages that can occur by following the SOP during dry 
periods, Revelle et al. (1969) proposed the lower rule curve that 
defines the trajectory of minimum storage levels in the dry 
season, thus making sure that storage depletion is gradual, and 
storage is not empty before the end of the dry season. The actual 
reservoir operation can take any “live storage” level between the 
lower and the upper rule curves based on the operators’ releases.

Although popular among practitioners, rule curves cannot 
guarantee optimal reservoir operation. The shape of the upper 
rule curve is usually fixed, while it should be different for each 
incoming flood that could be determined if a perfect short- 
term runoff forecast were available. On the other hand, the 
lower rule curve assumes that storage is always full at the end 
of each wet season, which may not be the case in dry years, 
thus making it impossible to follow the lower rule curve from 
the end of the wet season (Ilich 2023a). The shapes of the lower 
and upper curves typically remain the same, despite different 
hydrological regimes that may vary significantly from year 
to year. The refinement of the rule curve concept was signifi
cantly expanded with the introduction of the idea of demand 
hedging (Draper and Lund 2004), where the rate of storage 
depletion could be controlled by modifying the target demands 
to slow the loss of storage in dry years (Tu et al. 2003, Spiliotis 
et al. 2016, Ilich 2023b), by introducing operating zones asso
ciated with various levels of demand reduction (or hedging). 
These modifications imply a set of water rationing measures 
that are triggered when certain water threshold levels are 
reached (Garrote et al. 2023). These reductions are applied to 
prevent severe long-term shortages that would otherwise occur 
during dry periods (You and Cai 2008). Demand hedging is 
commonly applied to irrigation, since it is typically the largest 
consumptive water user in most river basins.

The hedging rules are identified by employing optimization 
methods, that range from LP to non-linear or dynamic pro
gramming, heuristic algorithms or hybrid optimization meth
ods (Spiliotis et al. 2016), with various resulting mathematical 
formulations of these rules (Neelakantan and Sasireka 2015). 
The identification of optimal hedging rules represents an area 
of active research in itself (You and Cai 2008, Neelakantan and 
Sasireka 2015, Chong et al. 2021, Ehteram et al. 2021, El 
Harraki et al. 2021, Tu et al. 2022, Anvari et al. 2023, Ji et al.  
2023, Thiha et al. 2023). Recent work by Ilich (2023a) provides 
mathematical proof that it is possible to simultaneously find 
both the optimal rule curve and the optimal level of demand 

Figure 6. Schematic representation of the upper (normal WL) and lower (min WL) 
rule curve.
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hedging by adding the so-called “equal deficit constraints,” 
which are defined as: 

where Yt and Dt represent water supply and water demand in 
time step t, respectively. This constraint is added as 
a constraint to the optimization problem to find optimal 
allocation over multiple time steps for the entire period T by 
taking into account all relevant reservoir outflow constraints, 
net evaporation, and mutual interaction of reservoirs in 
a multi-reservoir operating environment. The above constraint 
ensures the minimum required hedging as part of the model 
solution, subject to the starting storage levels, available reser
voir inflows and water demands throughout T consecutive 
time steps. The optimal level of demand hedging and the best 
rule curve for each simulated year can thus be developed for 
a large number of hypothetical hydrological years using impli
cit stochastic optimization. These solutions are then analysed 
statistically using various techniques to help create rule curves, 
which provide target storage levels for subsequent time inter
vals for any starting storage, by matching the existing database 
of perfect solutions with the current conditions in the field.

There is little doubt that reservoir operators need guidance 
for the simultaneous management of storage releases and water 
rationing of downstream demands. Macian‐Sorribes and 
Pulido‐Velazquez (2020) provide a review of techniques that 
have been used to analyse the results of optimization models to 
create guidance rules for reservoir operators, ranging from 
regression, data mining, or the use of other artificial intelligence 
(AI) techniques such as ANNs and decision trees. Still, the 
optimality of model solutions should be based on selecting the 
appropriate time step, which would typically exclude monthly 
time steps due to considerations in Section 2.2, as well as to 
make sure the solutions take into account important physical 
constraints on maximum outflows through the bottom outlets 
and turbines as a function of storage. Publications that comply 
with the correct selection of time steps and the inclusion of the 
necessary reservoir outflow constraints are rare, yet only such 
publications provide a realistic possibility of deriving optimal 
solutions from which efficient reservoir operating rules could be 
inferred. Due to a small fraction of reservoir optimization 
papers that provide derivation of practical reservoir operating 
rules, it can be concluded that most existing operating rules are 
still based on the use of simulation models, or sometimes mere 
spreadsheet calculations. This invariably poses a question on the 
utility and usefulness of the research efforts to develop powerful 
modelling tools. Various engineering departments conduct 
these studies, and since engineering is applied science, it is fair 
to ask: Why are there so few practical applications of this 
research?

4 Statistical analyses of the surveyed papers in terms 
of handling constraints and delivering practical 
operating rules

The preliminary list of papers to be included in this study 
was obtained from the Scopus database (https://www.scopus. 

com/) via a search for the keywords “reservoir operation,” 
“optimization” and “real-time” (or variants thereof), which 
were sought in the titles, abstracts and keywords of the docu
ments in the Scopus database. After the preliminary screening 
of these documents based on their relevance to this paper, 197 
of them were selected for a more detailed review according to 
the approach elaborated in the following section, including 
several that were added manually since they were relevant 
but were not picked up by the search function. The results of 
optimization can be used either as (a) input into additional 
analyses that should result in the creation of reservoir operat
ing rules; or (b) real-time operational tools.

The real-time operation applicability is still somewhat the
oretical, since it assumes that runoff forecasting tools with 
sufficient forecasting skills are available and used as input 
into optimization models in real time. This combination of 
runoff forecast and optimization is referred to as model pre
dictive control (MPC) in some publications (Macian‐Sorribes 
and Pulido‐Velazquez 2020). Although accepted on 
a conceptual basis, it is difficult to infer whether the MPC 
results are genuinely implemented by reservoir operators, 
since these details are usually not explicit in publications and 
the forecast reliability is uncertain. Jain et al. (2023) provide 
a review of papers related to the application of multi-reservoir 
models for flood operation. They list 26 publications that are 
used as real-time operational tools, but one has to wonder how 
this is achieved, given that only one of the referenced papers 
(Prakash et al. 2015) takes into account hydrological channel 
routing based on the Muskingum method that uses fixed 
routing coefficients calibrated individually for each historical 
flood. Also, Prakash et al. (2015) go out of their way to 
formulate six objectives for reservoir operation during floods, 
some of which are questionable. While the objective to keep 
the downstream channel flow at or below the full-bank capa
city is self-evident for all flood management studies, they add 
several additional objectives that can only cause unnecessary 
confusion, such as the objective to maximize the difference 
between the peak reservoir inflow and peak outflow during the 
flood event. This function would be maximized if the reservoir 
outflow is kept at zero during the flood, which would neither 
make sense nor be physically possible. However, the down
stream flood damage for zero outflow would be the same as for 
the outflow at the full-bank channel capacity, since both out
flows would result in zero flood damage. A similar propensity 
to unnecessarily complicate the objective function by introdu
cing often dubious multiple objectives which are difficult to 
reconcile or even explain to reservoir operators is often present 
in other papers (Quinn et al. 2019, Krit et al. 2023). Since the 
multi-objective approach is in vogue, most authors feel that it 
is important to follow the trend by supporting the popular 
approach. For example, Krit et al. (2023) provide six objective 
functions expressed as the statistical evaluation of model 
results, of which three (the shortage index, the average water 
shortage, and the total square deficit) essentially represent the 
same composite measure of water supply deficits.

Based on the topics presented in this paper, 
a comprehensive assessment of optimal reservoir operation 
should include the proper length of the simulated time step, 
along with the proper inclusion of the outflow vs storage 
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relationship and net evaporation. The Scopus search for rele
vant papers short-listed 197 papers that have been evaluated 
using several criteria presented below. The list of references of 
the 197 selected papers can be downloaded from Ilich and 
Todorović (2024), while the relevant findings are shown in 
Figs. 7 and 8.

Regarding the reservoir outflow limits, 53% of all publica
tions model them as constants, while 22% model them as 
temporal variables associated with the seasonal variation of 
downstream water demands. Only 8% of all publications 
included the limits determined as the minimum outflow capa
city (based on the available storage and the accompanying 
elevation vs outflow curve) and the target demands. As many 
as 17% of all publications did not even include any reference to 
the reservoir outflows. Consequently, in 92% of all surveyed 
publications the model results may be very different from 
those that would be feasible, due to ignoring the important 
hydraulic outflow constraints. This is demonstrated by the 
numerical example in Section 5. Regarding the time step 
lengths, monthly time steps were used in 48% of the studies, 
and also in about half of the studies with variable time step 
length (6% of the total), a small subsection of the surveyed 
papers where the reservoir operating rules were developed 

using monthly time steps and then implemented into the 
model with daily time steps. When it comes to hourly time 
steps, they generally include any lengths shorter than a day, 
such as 3 or 6 h. The surveyed publications that used daily or 
hourly time steps account for a total of 29% of all publications. 
However, only one in three of these papers take into account 
channel routing, as attested by Fig. 8, which shows that only 
10% of all surveyed publications take into account channel 
routing. This may be justified in instances where a single 
reservoir is modelled without any downstream components; 
however, such studies are of limited value, since most river 
basins have multiple reservoirs.

It is also disappointing to see that only 18% of all publica
tions include evaporation in the reservoir water balance equa
tion, and most of them include only evaporation, rather than 
net evaporation (evaporation minus precipitation on the water 
surface area of the reservoir). About 58% of all publications 
flatly ignore evaporation, while the authors of 23% of the 
surveyed publications did not find it worth mentioning at all. 
The use of heuristic solvers is typically associated with the use 
of simplistic problem constraints. The result is that a large 
percentage of fixed reservoir outflow constraints in Fig. 7 
(53%) are typically associated with the widespread use of 

Figure 7. Reservoir outflow limits and time step length among the surveyed publications.

Figure 8. Classification of channel routing, net evaporation and solution algorithms.
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heuristic solvers in Fig. 8 (60%). The reason for this is likely the 
need to add additional penalty terms to the objective function 
to ensure feasibility. These terms complicate the convergence 
to high-quality solutions and add significantly to the computa
tional burden. Most papers that feature heuristic solvers 
demonstrate their use on relatively simple problems with one 
or two reservoirs and fewer than 10 variables, which is very 
small compared to the size and complexity of typical modern 
water resources systems. This pales in comparison with the 
achievements documented by papers that use LP or NLP 
solvers that are also used as solution engines for several 
known commercial tools such as WEAP, MODSIM, 
RiverWare, OASIS or WEB.BM. Despite all of the above, 
heuristic solvers are viewed favourably by a large number of 
researchers, whose funding is typically provided by research 
grants that are usually not tied to the successful application of 
their research by reservoir operators in the field or by water 
management agencies. This disconnect is also visible in 
Table 1.

While the aforementioned disconnect between academia 
and practitioners has been known for decades, this survey 
shows that the gap has not narrowed over time, contrary to 
general expectations due to the emergence of technology in the 
information age. The importance of the inclusion of the proper 
reservoir outflow constraints is discussed in Section 5.

5 Numerical example

The following numerical example demonstrates the signifi
cance of taking into account the outflow vs elevation function, 
as opposed to ignoring it, along with demonstrating a novel 

use of LP for generating Pareto-optimal solutions. The system 
schematic is shown in Fig. 9. There is one reservoir, one 
diversion canal from the reservoir for irrigation supply, and 
one tributary that contributes flows into a downstream river 
reach that has environmental flow (E-flow) targets, which are 
met with combined flows from the tributary and reservoir 
releases.

The objective of the numerical example is to maximize 
water supply for both E-flow requirements and irrigation 
demands, by using weekly time steps over 22 consecutive 
weeks of irrigation season. Five selected water sharing policies 
were modelled using Equation (8), which ranged from equal 
relative deficits between E-flows and irrigation to prioritizing 
each type of water use at the expense of the other, along with 
75%/25% and 25/75% sharing arrangements for the remaining 
two scenarios. Tables 2 and 3 provide the input data.

Return flows are set to 20% of consumptive use on irriga
tion block, while the reservoir releases to the downstream river 
reach are made to augment tributary flows such that the E-flow 
targets are met based on water sharing policies with irrigation 
for each of the five selected water sharing policies. The differ
ences between Scenario 1 and Scenario 2 are based on the 
inclusion or exclusion of the outflow elevation curve as 
a model constraint, while both Scenarios 1 and 2 enforce 
equal relative deficit sharing between E-flows and irrigation.

The purpose of comparing the two scenarios is to demon
strate the differences in optimal solutions with and without the 
reservoir outflow constraints. The starting storage level for all 
simulations was 24 m, with full supply at 30 m and dead 
storage level at 5 m. When the control structure is used (as 
in Scenario 1), the invert of the outflow structure located at the 

Figure 9. Schematic layout of the numerical example.

Table 1. Percentage of surveyed publications concerning the classification 
criteria.

Classification

Involvement of 
water managers 

as co-authors

The publication 
provides useable 

reservoir operating 
guidelines

Actual use of 
results reported 
in the industry

Yes 2.54% 9.14% 2.54%
No 94.92% 75.13% 93.91%
Unclear 2.54% 15.74% 3.55%

Table 2. Reservoir capacity and outflow curve for irrigation canal.

Reservoir 
elevation (m)

Water surface 
area (ha)

Volume 
(1000 m3)

Reservoir 
elevation (m)

Qmax 
diversion 

(m3/s)

0 0 0 10 0.00
10 300 15 000 15 5.40
20 400 50 000 20 9.00
30 500 95 000 25 11.34

30 12.60
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elevation of 10 m becomes de facto the dead storage level, since 
the storage level below the invert results in zero flows into the 
irrigation canal, and that would also stop water allocation to 
E-flows in any scenario where there is equal deficit sharing 
between irrigation and E-flows. It is instructive to observe the 
difference in optimal reservoir levels between Scenarios 1 and 
2, which are both based on equal deficit sharing between 
E-flows and irrigation, and differ only by the inclusion of the 
outflow vs elevation curve in the model vs ignoring it, as 
shown in Fig. 10. Although the water demands for E-flows 
and irrigation are identical in Scenario 1 and 2, the inclusion of 
the outflow constraint results in a different solution in 
Scenario 1, with about 22.2% lower supply compared to 
Scenario 2 where the outflow vs elevation constraint is 
included in the model. Figure 11 shows that the resulting 
optimal rule curves obtained for Scenarios 1 and 2 are quite 
different, while this difference is only caused by including or 
excluding the outflow vs elevation curve as an optimization 
constraint.

A total of five scenarios that utilize the outflow vs elevation 
curve were developed with deficit sharing ranging from the 
maximum priority given to either irrigation or E-flows on each 
end of the spectrum, with three additional scenarios that 
involve sharing of relative deficits either 50/50 or by giving 
a predetermined amount of higher share to each type of water 
use at the expense of the other. Each of these five solutions was 
obtained after less than 1 second of computer run time and 
they are sufficient to create the Pareto-optimal front shown in 
Fig. 12 in the units of mean annual water supply to each water 
use on the left side of the graph, and in terms of the mean 
relative deficits as a percentage of the target demands.

There are some advantages to obtaining the Pareto front 
in this way: (a) each of the points in the curve is guaran
teed to be globally optimal (i.e. the best possible) subject to 
the input data and assumed water-sharing policy (as 
opposed to being “approximate,” resulting from the use 
of heuristic solvers); (b) each of the solutions is guaranteed 
to comply with the reservoir elevation vs outflow con
straints and the deficit sharing constraints; and, (c) the 
computational effort of getting the Pareto-optimal front is 
smaller by several orders of magnitude compared to the 
use of heuristic solvers, which enables the use of this 
approach on much larger problems with shorter time 
steps that may also include hydrological routing (Ilich 
and Basistha 2024). All of these advantages result from 
the nature of LP, which seems to be downplayed in many 
recent publications as an example of “outdated” technol
ogy. The test problem presented here may seem trivial, but 
most heuristic solvers may have significant difficulties find
ing the solutions to Scenario 1 shown in Table 2 due to the 
complexities of the constraints that need to be enforced 
over 22 weeks simultaneously between two diverse compo
nents, one of which also has the local runoff contribution. 
A proper account of net evaporation has also been 

Table 3. Reservoir capacity and outflow curve for irrigation canal.

Date

Input data Scenario 1 Scenario 2

Reservoir 
inflow (m3/s)

Irrigation 
demand (m3/s)

E-flow target 
(m3/s)

Tributary 
inflow (m3/s)

Evap. 
(mm)

Precip. 
(mm)

Irrigation 
supply  
(m3/s)

E-flow 
supply  
(m3/s)

Irrigation 
supply (m3/s)

E-flow supply 
(m3/s)

1 April 2023 3.724 2.040 1.676 0.561 7 0 1.545 1.272 1.888 1.555
8 April 2023 3.220 3.091 1.449 0.349 7 0 2.340 1.098 2.860 1.342
15 April 2023 3.080 4.423 1.386 0.371 8 0 3.347 1.052 4.090 1.286
22 April 2023 3.860 5.862 1.737 0.583 10 0 4.437 1.317 5.423 1.610
29 April 2023 4.752 7.273 2.138 0.765 12 0 5.505 1.620 6.728 1.980
6 May 2023 8.122 8.555 3.655 1.539 14 0 6.474 2.771 7.912 3.387
13 May 2023 11.034 9.639 4.965 1.458 16 0 7.299 3.763 8.921 4.599
20 May 2023 13.101 10.482 5.895 1.623 18 0 7.935 4.467 9.698 5.460
27 May 2023 14.144 11.067 6.365 1.563 20 0 8.382 4.816 10.244 5.886
3 June 2023 14.157 11.397 6.371 2.077 22 29 8.632 4.823 10.550 5.895
10 June 2023 13.267 11.489 5.970 1.631 24 43 8.700 4.520 10.633 5.525
17 June 2023 11.700 11.374 5.265 1.370 25 0 8.609 3.983 10.522 4.868
24 June 2023 9.743 11.093 4.384 1.071 27 58 8.397 3.316 10.263 4.053
1 July 2023 7.710 10.690 3.469 0.913 29 60 8.094 2.627 9.893 3.211
8 July 2023 5.901 10.212 2.655 0.723 30 59 7.731 2.014 9.449 2.462
15 July 2023 4.570 9.704 2.057 0.607 32 56 7.344 1.560 8.977 1.906
22 July 2023 3.886 9.203 1.749 0.459 34 0 6.966 1.325 8.514 1.620
29 July 2023 3.897 8.739 1.753 0.426 36 46 6.618 1.325 8.088 1.620
5 August 2023 3.600 8.326 1.620 0.462 38 39 6.307 1.227 7.709 1.499
12 August 2023 3.700 7.962 1.665 0.481 40 0 6.027 1.264 7.366 1.546
19 August 2023 3.400 7.625 1.530 0.517 41 0 5.777 1.158 7.061 1.416
26 August 2023 3.200 7.268 1.440 0.451 42 0 5.505 1.090 6.728 1.333

Total 85.86 31.70 104.93 38.74
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Figure 10. Comparison of optimal reservoir levels for Scenarios 1 and 2.
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included in the simultaneous optimization of reservoir 
operation for 22 consecutive weeks in this example.

6 Conclusions and recommendations

This paper provides a targeted review of the current state of the 
art in river basin modelling, with an emphasis on the applic
ability of model solutions for basin managers and reservoir 
operators. The results of this survey indicate that there is still 
a significant disconnect between academia and practitioners. 
The main findings can be summarized through the following 
points:

● Most planning studies aiming to develop reservoir rule 
curves rely on the use of monthly calculation time steps. 
This causes gross simplification of inflow hydrographs, 
with negative effects on the accuracy of the model results 
that have yet to be properly evaluated and reported in the 
literature.

● Most modelling studies ignore the effect of reservoir 
outflow constraints and deliver solutions of questionable 

quality since they may not be physically possible during 
low storage levels.

● Net evaporation is not modelled properly in a large 
majority of modelling studies. It is either modelled as 
evaporation (without its precipitation component), or it 
is ignored altogether.

● Only a handful of optimization models that were 
surveyed display the ability to be used as real-time 
operational tools, mainly due to their inability to 
handle channel routing that is required for daily or 
sub-daily reservoir release decisions in multi-reservoir 
systems. In addition to the low reliability of real-time 
runoff forecasts, the lack of ability to address these 
processes in most models with sufficient accuracy is 
probably one of the principal reasons for the gap 
between theory and practice when it comes to apply
ing the model results as guidance for reservoir releases 
in real-time.

● Multi-objective optimization has introduced additional 
complexity into modelling by generating a multitude of 
solutions without clear guidance to practitioners on how 
to apply these solutions in their day-to-day decision 
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making to improve the management of reservoir releases. 
Clear guidelines on how the problems should be formu
lated and solved are missing, resulting in a multitude of 
ideas among researchers that have achieved no traction 
among practitioners. Also, the above remarks on the 
importance of proper modelling of constraints are also 
applicable to multi-objective optimization.

● LP solution algorithms are still the premier tools for river 
basin management models, capable of solving large pro
blems with complex constraints much faster than any 
other solution methodologies, while simultaneously 
guaranteeing finding solutions that are globally optimal. 
Many researchers seem to have lost sight of this fact.

The surveyed papers document various attempts that have 
been made to infer reservoir operating rules from the results 
of river basin optimization models. The findings on the nature 
of practicality of the reservoir operating rules are as follows:

● The use of regression (linear or non-linear) that relates 
the starting storage level and anticipated (forecasted) 
reservoir inflow for a given time step to the reservoir 
outflows remains one of the common techniques for the 
generation of the reservoir release rules. This approach 
has recently been complemented by using ANN and 
other machine learning algorithms instead of regression. 
However, typical difficulties are the use of monthly or 10- 
daily time steps in these studies, which would require 
reliable monthly or 10-daily runoff forecasts for real-time 
applications. The other disadvantage of this method is 
that it derives reservoir releases without taking into 
account the current downstream water demands that 
may be partially met by downstream runoff and down
stream rainfall, the effects of which are typically ignored 
by regression models.

● Reservoir rule curves have been defined in most of the 
surveyed studies as the storage trajectories obtained from 
optimization models over a range of inflow conditions. 
More refined studies resulted in three different rule 
curves, corresponding to typical dry, median or wet 
years. However, these rule curves are still fixed, while 
they should depend on the starting storage levels inher
ited from previous years and the runoff/demand condi
tions in each year, and they may differ significantly 
from year to year. A universally acceptable method of 
analysing numerous optimal reservoir trajectories to cre
ate practical guidelines for reservoir operation in typical 
dry, median and wet years is still missing.

● Some proposals for joint management of storage using 
reservoir operating zones that are related in varying 
degrees of water rationing policies seem to hold promise 
for improved drought management that is relatively easy 
to follow and implement. These proposals do not rely on 
inflow forecasts, but they do take into account the time of 
the year and starting storage levels.

● Similarly, the model predictive control (MPC) approach 
seems to be very promising for reservoir management 
during floods. The difficulty is the need to provide real- 
time data from the field (starting river and storage 

conditions), along with a reliable short-term runoff fore
cast. Given the massive efforts in the development of 
sophisticated weather forecasts, improved remote sen
sing and the use of AI to improve rainfall-runoff models, 
the eventual synergy between these emerging technolo
gies and the MPC approach may yet be the best option 
for computerized assistance of future real-time reservoir 
operation during floods.
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