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ABSTRACT

The sheer number of publications that deal with the topic of optimizing the management of river basins
has grown exponentially since the early 1980s, and this growth is still on the rise. Despite this, the
practical actions of most reservoir operators are still based on their gut feelings, or at best on straightfor-
ward rules that did not originate from rigorous scientific studies but are rather the result of the operator’s
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experience or simple spreadsheet calculations. Many publications have already pointed out the gap

between theory and practice over the past few decades; however, none have so far offered clear
guidelines on how to overcome this gap. This paper presents an extensive literature review to examine
potential reasons for this gap. In addition to this, a numerical test problem demonstrates a novel way of
using linear programming for constructing Pareto-optimal solutions for a large class of multi-objective

optimization problems.

1 Introduction
1.1 Challenges in river basin management

The complexity of managing modern river basins has led to
various applications of systems analysis techniques, which
were defined by Rogers and Fiering (1986, p. 146S) as a “set
of mathematical planning and design techniques which at
least include some formal optimization procedure.” In this
context, optimization is understood as a process of selecting
one or more solutions that have superior qualities in terms of
management objectives compared to other arbitrarily
selected solutions, while they are also feasible concerning
the physical and operational constraints. In recent decades,
much of the discussion has focused on the issue of defining
objectives, while the treatment of constraints seems to have
taken a back seat.

In their discussion about the future of the science of water
resources systems analysis, Brown et al. (2015) made
a distinction between its use for (a) planning studies related
to water policy; (b) addressing trade-offs among multiple
objectives; (c) water resources operations; and (d) the water
distribution systems related primarily to design and operation
of pressurized water supply networks, which are outside of the
scope of this paper. In essence, the use of a scientific approach
should help generate better river basin management plans and
assist with their implementation in real time, assuming the
required input data are also available in real time. This should
emphasize the link between (a) and (c), since planning studies
are de facto conducted to gain insight into river basin opera-
tion under various changing conditions that may involve
structural changes or changes in hydrological conditions.
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The term river basin management is often interchanged with
terms like reservoir management or reservoir operation, due to
a sizeable overlap in their functionality. Indeed, reservoirs are
indispensable for sustainable river basin management, since
they store water during high runoff to help reduce or eliminate
deficits at times of shortage. Without reservoirs, the notion of
river basin management may be reduced to controlling sedi-
ment erosion or the concentration of pollutants at the source,
but the natural flow regime with its wild swings between floods
and droughts would remain unchanged. Reservoirs should be
managed optimally for all of their intended and often conflicting
goals, which may include water supply for domestic or indus-
trial purposes, irrigation, environmental maintenance flows, or
power generation. In general, the operational goals are to help
minimize flood damage and reduce the duration and magnitude
of water shortages. These goals require resolutions at different
time scales that range from hourly for flood events up to
monthly for drought management, requiring different problem
definitions and solution strategies (Labadie 2004, Rani and
Moreira 2010, Azad et al. 2020). Therefore, improved operation
of the existing reservoirs is as important as is optimal design of
new reservoirs, and advancing the state of the art in the area of
reservoir operation represents an area of active research
(Dobson et al. 2019). This is supported by the fact that there is
presently a large number of publications that deal with the topic
of reservoir operation that has grown exponentially since the
early 1980s, and this growth is still persistent, as shown in Fig. 1.

The sheer volume of the models investigated by the
researchers poses the question of their applicability in river
basin management and operation. If used as planning tools,
they should help generate reservoir operating rules and water
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Figure 1. The number of publications with “reservoir operation” search terms in the title, abstract, or keywords. Obtained from the SCOPUS database on

29 December 2023.

rationing policies as integral parts of river basin plans. If used
as operational tools in combination with runoff forecasts, they
should suggest the best set of reservoir releases subject to the
basin conditions and runoff forecast. Given the above, the
principal question addressed in this paper can be formulated
as follows: “How do the numerous publications related to
reservoir optimization help the basin managers and reservoir
operators?” The paper proceeds as follows: Section 2 gives
a historical background related to the use of optimization in
water resources, with a particular emphasis on the problem
definition and relevant constraints, including some observa-
tions related to the widespread use of multi-objective optimi-
zation. Section 3 explains the current operators’ practices,
while Section 4 provides a statistical summary of a survey of
selected papers, particularly concerning the inclusion of the
constraints that are considered important based on the pre-
viously outlined problem definition. As an example of the
importance of one of the highlighted constraints in the survey
in the previous section, Section 5 provides a numerical exam-
ple that demonstrates the importance of the reservoir outflow
constraints that are equally applicable to single and multiple
objective optimization, while Section 6 gives conclusions and
recommendations.

2 Problem definitions and historical background

We define the term “model” as a representation of reality. In
the case of river basin models, we typically refer to
a mathematical representation of reality encapsulated in the
form of mathematical algorithms and a computer program
that mimics decision making processes, acting as a “crystal
ball on the table” for river basin managers and reservoir
operators. Since the real world is inherently very complex,
models invariably involve some level of simplification of rea-
lity. However, a properly designed model should have
a sufficient level of complexity to include all important aspects
of reality, without being cluttered with too many unnecessary
details, which may lead the modelling practitioners to
a situation where they “cannot see the forest for the trees.”
The most basic distinctions among models are between simu-
lation and optimization models. Rogers and Fiering (1986) define

simulation models as “descriptive techniques” that imply the
application of “what-if” rules that are triggered by the storage
levels, inflows, and demands evaluated individually in each simu-
lated time step. These models do not define the best releases over
a simulated period, but are rather aimed to derive releases by
following a set of prescribed rules. A historical example is the
Hydrologic Engineering Centre (HEC-5) model, which was even-
tually renamed HEC-ResSIM (US Corps of Engineers 2024), one
of the few public domain models among its several well-known
commercial counterparts such as RIBASIM (DeltaRes 2024a) or
Mike Hydro Basin (Danish Hydraulic Institute 2024).

Originally developed for single reservoir systems, the use of
“what-if” rules became difficult to implement even for single-
time-step solutions, in the case of river basins with multiple
reservoirs and moderately complex network configurations.
Consequently, the problem of water allocation based on pre-
scribed rules was facilitated by the use of optimization algo-
rithms, although they were guaranteed to find the best
solutions that followed for individual time steps, without tak-
ing into account the consequences of the current time step
solutions for the system performance in subsequent time steps.
Representatives of these improved simulation models with
built-in optimization algorithms to assist with water allocation
in single time steps include MODSIM (Labadie et al. 1986),
Water Evaluation Assessment Program (WEAP) (Yates et al.
2005), Resource Allocation Model (REALM) (Victoria State
Government 2024) and AQUATOOL (Andreu et al. 1996),
and they are all typically based on simplified linear program-
ming (LP) solvers known as network flow algorithms
(Bertsekas and Tseng 1988), except for the WEAP model,
which uses a full LP solver that allows more versatile repre-
sentation of constraints. The choice of LP was driven by several
factors, such as multiple publicly available solver libraries, fast
execution times and the guarantee of finding the global opti-
mum (albeit for individual time steps), along with the fact that
water rationing rules were easy to formulate as LPs.

The use of LP solvers to model a sequence of individual
time step decisions is referred to as simulation-optimization
modelling by some authors, such as Fayaed et al. (2013) in
their review paper on reservoir system management techni-
ques. They differentiate simulation-optimization models from



full reservoir optimization models by their ability to find the
best set of releases over a specified period T which involves
multiple time steps ¢ (t = 1,T), usually referred to as “multi-
period” or “multiple time step” optimization, where the reser-
voir releases made in one time step have consequences that are
felt two or more time steps later at critical downstream loca-
tions, after they have been modified by the effects of hydro-
logical routing and additional influx from tributaries or
diversions at water intake structures (Fig. 2).

The same physical system is repeated in Fig. 2 for three con-
secutive time steps in the left to right direction for demonstration
purposes. Releases made in the first time step undergo hydrologi-
cal routing transformation as they propagate downstream. This
transformation should be modelled as a non-linear constraint for
daily or hourly time steps when the travel time through the entire
system is longer than the calculation time steps, since storage
releases need time to reach the critical downstream locations.
This link cannot be modelled directly with simulation models
since they only model individual time steps. The effects of travel
time and hydrological channel attenuation are typically ignored in
most publications by authors who enthusiastically devote a lot of
space to explain the heuristic solution algorithms to which they
ascribe real-time optimization capabilities for managing floods or
hydropower operation, without mentioning the need for proper
inclusion of hydrological channel routing as constraints into
optimization. A typical hydrological routing equation is:

= GQ + GQl + G (1)

While the above equation has the form of the well-known
Muskingum equation, it should be noted that continuous model-
ling that includes a variation of channel flows cannot be repre-
sented properly using fixed routing coefficients that are
determined for a single event using the Muskingum method
(Ponce and Yevjevich 1978). Rather, the routing coefficients
change with the change of flows which determine the travel
times through a river reach. It is interesting to note that the full
definition of the reservoir operation problem using the LP
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Figure 2. Schematic representation.
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formulation was given five decades ago by Windsor (1973),
whose initial formulation was made for a single time step, and
later extended to a multiple-time-step solution framework by
Yazicigil et al. (1983) and Needham et al. (2000). Ignoring the
hydrological routing constraints given by Equation (1) is possible
when conducting a river basin planning study that is focused on
drought management, where a weekly time step may justify the
steady-state assumptions if the travel time along the entire river
basin is on the order of 4 to 5 days. This usually restricts the size of
the basins being modelled to less than 400 km in total length.
Despite the huge volume of papers that cover heuristics search
engines and dynamic programming (DP) (Macian-Sorribes and
Pulido-Velazquez 2020, Krit et al. 2023), the only commercially
available models that were identified as capable of including
channel routing as constraints in multiple time step optimization
are RTC (DeltaRes 2024b); RTO (Kisters 2024); and Web Basin
Management (WEB.BM) (Ilich 2021; Ilich and Basistha 2024),
and these models rely on classical LP or non-LP solution algo-
rithms. Hydrological routing is required for modelling with time
steps that are daily or shorter, since the size of a typical river basin
involves travel time throughout the basin (i.e. time of concentra-
tion) that is usually much longer than 1 day. Real-time operation
or planning studies that examine reservoir operation during
floods require the use of daily (or shorter) time steps, while studies
that focus on managing droughts typically use weekly, 10-daily or
monthly calculation time steps and they do not require channel
routing transformation.

In terms of the options related to hydrological inputs, Fayaed
et al. (2013) provide a clear distinction between deterministic and
stochastic optimization, as well as the differences between implicit
and explicit stochastic optimization. The need to resort to stochas-
tic functions is driven by the lack of reservoir inflow series of
sufficient length. Implicit stochastic optimization implies the
development of stochastic time series of hydrological variables,
such as inflows and precipitation as representative flow series that
can portray various future runoff conditions, which are then fed to
the optimization models as input data. Conceptually, this solution
strategy is not different from using the historical time series of
inflows as input. Assuming that water allocation provides benefits
to all stakeholders and that the specified period of known inflows
T covers the entire simulated period, the objective function can be
generally defined as:

T
max Z B(st, 1t) 2)
=1

where 8 represents the benefit function associated with the
ending storage s, and the end of each simulated time step
t and the average regulated flows r, that represents allocation
released to various stakeholders in each time step t. The above
maximization problem is subject to the following constraints.

Mass balance constraints for every node in the network
have the following general form:

m n 1
st =S+ > qie— Y _rie— Y lossig (3)
i=1 = k=1

where g; and r; represent average inflow and outflow from
a node via their respective channels i and j, while the loss



4 N. ILICH AND A. TODOROVIC

term may represent losses with index k that may be related to
losses due to net evaporation or seepage in time step t. If there
is no storage for a particular junction or diversion node, the
above equation is still applicable except that the storage terms
s; and s,,; are set to zero. Storage constraints typically require
definitions of the minimum and maximum operating levels
which can also be temporal variables:

Smin,t S St S Smax,t (4)

where the minimum and maximum storage may be defined in
general as a function of time throughout the year as opera-
tional constraints that require modification of the minimum
and maximum allowable limits.

Losses can be related to canal losses or losses to net eva-
poration from the surface water area of reservoirs, which
should be calculated using the following formula:

(Ar+ Arr)

lOSSt = NEQ = (et _Pt) 2

(5)
where e; and p, are respectively evaporation and precipitation
on the surface area A of the reservoir over a time step t, while
A, and A,,; are the water surface areas at the start and the end
of time step t. Net evaporation is the difference between
evaporation and precipitation in time step t. This implies
that in some time intervals during rainy seasons the losses
due to net evaporation can be negative, since the value of
precipitation may exceed the value of evaporation. Although
correctly defined, the above loss function is rarely used in this
form. It is usually either completely ignored, or if it is used it is
defined as evaporation, not as net evaporation, thus ignoring
the precipitation directly on the water surface area.

2.1 Reservoir release constraint

In most published studies flow releases r; are restricted by the
constant upper levels determined either by the target water
demands or by the installed capacity of the turbines if the
releases are made to generate hydropower, using Equation (6):

rmin,t § T S rmax,t (6)

where the lower release levels may be required as the minimum
maintenance flows. The above relationship is the most com-
mon way of modelling the upper limits on channel flows,
which is problematic for reservoir outflows since it ignores
the physical relationship between the maximum outflow and
the available storage given by the outflow vs elevation curves
that can be associated with bottom outlets, spillways or tur-
bines. In each instance the maximum flow r,,,,, may be
reduced from its constant value to a value that corresponds
to the average storage over the time step ¢ based on the outflow
vs storage relationship which exists for all physical outlet
structures. The correct formulation of the above constraint is:

. St + S . st +s
mzn{Qmax (%) s rmin,t} <n< m’”{Qmax (%) s rmax,t}
(7)

where the function Q,,,4.(s) refers to the maximum outflow as
a function of the available storage s based on the outflow vs
storage curve. This constraint is almost routinely ignored

when modelling hydropower generation, implying that the
assumed outflow through the turbines can always reach the
installed turbine flow capacity regardless of the storage levels,
which may lead to gross errors in time intervals when the
reservoir storage is low. The outflow limit constraints for the
bottom outlet and spillway are demonstrated in Fig. 3 using
the example of Dickson Dam in the Province of Alberta,
Canada. The use of LP solvers requires piece-wise linearization
of the maximum outflow vs storage function, and also the
introduction of binary variables, as detailed by Needham
et al. (2000) and Ilich (2008), who defined the need to use
mixed-integer linear programs by advanced modelling tools
such as WEAP (Yates et al. 2005), OASIS (Randall et al. 1997)
and RiverWare (Zagona et al. 2001), or WEB.BM (Ilich 2021).
The importance of proper modelling of the outflow constraints
as a dynamic function of storage is demonstrated in the
numerical example provided in Section 5.

The curve in Fig. 3 shows a very low outflow capacity of the
bottom outlet compared to the spillway. If the modellers ignore
this relationship, their models would allow the release of any
amount of flow regardless of the storage level. For example, if the
modelling goal was to manage a large incoming flood, the model
could release 900 m’/s (which corresponds to the full bank
downstream channel capacity) for 2 or 3 days before the arrival
of the incoming flood peak, thus reducing the storage signifi-
cantly and creating comfortable extra storage for flood protec-
tion. Yet it is obvious from the graph in Fig. 3 that such an
operation would not be physically possible, given that the max-
imum release from storage is severely restricted if the level drops
below 941 m. Also, when reservoir levels are below 930 m, the
bottom outlet capacity may be insufficient to meet downstream
demands. Ignoring the outflow capacity constraint would allow
the reservoir to route the sufficient from other upstream reser-
voirs to satisfy water demands which may exceed the outflow
capacity, without ensuring that there is sufficient storage volume
to make the desired releases physically possible. Hence, addres-
sing constraints of this kind is important to make sure that the
model solutions are meaningful and acceptable to the reservoir
operators. It should also be noted that this constraint is valid for
any length of time step, from hourly to monthly.

Some other operational constraints can and should be
modelled as hard constraints, since their violation would
have legal implications. Those include for example the annual
diversion volume licence limits, which cannot be exceeded
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Figure 3. Dickson Dam elevation vs outflow (Alberta, Canada).



during an irrigation season, or the apportionment agreements
between bordering states or provinces, which are usually asso-
ciated with a combination of instantaneous minimum flow at
the border crossing and the target volume requirement that
needs to be passed to the downstream jurisdiction over
a specified time period.

A computer modelling tool that can successfully solve the
above reservoir optimization problem with all relevant real-
world constraints would certainly be of assistance to reservoir
operators, especially if there was also a reliable runoff forecast-
ing tool that could provide real-time runoff forecasts as
updated daily model inputs. This should be the ultimate goal
of the model development. Given that perfect runoff forecasts
for periods of up to 5 days are not yet available, the focus of the
modelling community should be to improve the planning
studies to develop reservoir operating guidelines that should
aid the reservoir operators.

2.2 Disadvantages of using monthly time steps

Most publications available in the literature rely on the use of
monthly calculation time steps, without making an effort to
evaluate the disadvantages of this approach. The monthly
hydrograph consists of the mean daily flows averaged over
a month. Monthly averages are close to daily flows only during
dry seasons, which are characterized by low fluctuation of daily
flows. However, using monthly calculations during high-flow
seasons leads to gross misrepresentation of daily flows, as can
be seen in Fig. 4 which compares daily and monthly natural
flows at the Smoky River in Northern Alberta (Water Survey of
Canada 2024).

It is well understood that the use of mean monthly flows is
not suitable for studying reservoir operation during floods.
Compared to monthly time steps, modelling daily time steps
would certainly require different storage drawdowns to ensure
minimizing unnecessary spills that bypass turbines. Studies
that focus on the impacts of the time step length (daily, weekly
or monthly) require comparisons of the model outputs where
all other model inputs are the same except for the time step
length. Such studies are missing in the literature. Ideally, for
steady-state calculations, the calculation time step length
should be longer than the travel time through the entire river

9000
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basin by a factor of 2 or more, to ensure that most of the release
from the upstream reservoirs can reach the most downstream
components within the same time interval. This is often vio-
lated in many studies where daily time step is used on river
basins with the total travel time through the basin of several
days. Optimization models rely on a basic premise that reser-
voir releases are demand-driven. Since most basins have travel
times longer than one day, this premise requires solving multi-
ple time steps simultaneously for daily time steps, as shown in
Fig. 1, such that the release decisions can reach intended
downstream demands after more than one day of travel time.
The model should therefore be able to determine both the
timing of the releases and their quantities to reach the desig-
nated downstream users while accounting for all hydrological
transformations along the way.

2.3 Previous review papers and the current state-of-the-
art related publications

Most of the early attempts to utilize the results of optimization
used monthly time steps to develop a regression that would
provide forecasts of the reservoir levels at the end of the
month based on starting storage and anticipated monthly inflow
(Young 1967). Since regression can sometimes result in out-
comes that are outside of the expected range, Karamouz and
Houck (1982) introduced an additional correction factor to
keep the results of the regression within an anticipated range,
while Willis et al. (1984) developed a probability density func-
tion of optimal releases based on selected state variables and
statistical analyses of the output of implicit stochastic optimiza-
tion. It should be noted that these attempts relied on monthly
optimization results that also ignored the reservoir outflow
constraints. Attempts were also made to use artificial neural
networks (ANNSs) to derive operating rules from the results of
stochastic optimization (Raman and Chandramouli 1996,
Chandramouli and Deka 2005, Farias et al. 2006). In general,
in both the regression and the ANN-based models the releases
obtained by the optimization model are related to reservoir
storage at the end of the previous (typically monthly) time
steps, and inflow during the current time step. There are several
issues when attempting to apply this approach in real time: (a)
monthly runoff forecast is not available with sufficient certainty;
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Figure 4. Monthly and daily hydrographs, Station 07GJ001, Smoky River, Alberta, Canada.
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(b) monthly forecast implies fixed monthly flows, which does
not correspond to reality; (c) reservoir releases determined by
regression will likely not match the current downstream
demands; and (d) reservoir releases determined in this way
may not be physically possible due to the limitations imposed
by the outflow vs elevation curve, although the constraint that
defines maximum outflow as a function of storage is found in
some attempts to apply adaptive neuro-fuzzy systems to reser-
voir operation (Mousavi ef al. 2007, Mehta and Jain 2009), or in
the attempts to introduce parametric simulation-optimization
(Koutsoyiannis and Economou 2003).

While the popular models that have tens of thousands of
users rely on LP (e.g. MODSIM, WEAP, RiverWare), the
authors of many recent review papers hardly take any notice
of them in their reviews (Kumar and Yadav 2022, Lai et al.
2022, Kangrang et al. 2023). Instead, the focus is on “popular”
models based on heuristic search engines, while the modelling
objectives have shifted to “the search for an optimal policy”
rather than the search for the best model solution, implying
a strong shift to multi-objective optimization under the pretext
that the river basin managers can no longer define their man-
agement objectives, so they have to rely on the multi-objective
optimization models to help them improve the understanding
of their priorities. The emphasis has moved from finding the
best reservoir releases for a given set of inputs to finding the
solutions that are “good enough,” that are non-dominated,
“equally optimal” or “Pareto-optimal” with respect to two or
more operational goals. The number of publications that cover
multi-objective programming has been rising faster than the
classical multi-purpose optimization papers, such that some
recent review papers completely ignore the classical optimiza-
tion techniques (Lai et al. 2022). This is all happening in spite
of many reports that practitioners are having difficulties
understanding the results and finding meaningful ways to
apply them in practice (Castelvecci 2016, Quinn et al. 2019).
A reservoir operator needs guidance on how much water to
release on a daily basis. Offering 100 or more Pareto-optimal
solutions instead for multi-year model runs provides a huge
amount of data which is difficult to convert to a practical
operating guideline. While the gap between theory and prac-
tice has existed for decades (Simonovic 1992), the increasing
multitude of papers that utilize multi-objective programming
has done nothing to close it. On the contrary, the principal
reason for this is the introduction of the idea that reservoir
operating rules are difficult to define explicitly due to conflict-
ing objectives among various stakeholders, often driven by the
fact that some objectives, such as environmental flow targets,
cannot be defined using typical economic value functions,
while fitting them into the existing priority chain is routinely
questioned by other water users. In essence, this introduced
the need to redefine the objective function by removing the
explicit priority of one stakeholder over another, and rather
defining objectives by using system-wide parameters, such as
reliability or shortage index, vulnerability, the highest water
shortage, or the frequency of water shortage as measures that
are applied evenly on all types of water use (Krit et al. 2023).
There is a prevailing attitude in the recent literature that
reservoir operation is a “wicked” problem (Mamatova et al.
2016, Wu et al. 2023). However, for most real-world reservoir

operators, the rules are clear, and the allocation priorities are
defined by the governing water management committees
which are also staffed by stakeholders. Allocation policies are
based on either the legal priorities arising from the water
licensing system, as is the case in North America, or a mix of
economic and political objectives, and often as an agreed
combination of both. In most river basins around the world,
the sum of municipal and industrial water use constitutes
a small fraction of the total irrigation water use.
Consequently, any form of equal deficit sharing between the
two would not make much sense, since shorting municipal
supply would not help the irrigators in any meaningful way,
while it would enrage the urban population. Furthermore,
reducing flood damage should not be a priority available for
a trade-off with any other objective, especially for basins that
have early flood warning systems, in spite of the fact that many
researchers are keen to use multi-objective optimization in an
effort to find a compromise between reducing flood damage
and reducing the loss of hydropower generated during floods
(Moridi and Yazdi 2017). It is not clear that there has to be any
loss in hydropower during floods, especially since most larger
basins have flood warning systems which cause the operators
to lower the reservoir storage prior to the arrival of the flood
peak flow. When such pre-flood drawdown is achieved by
releasing water through the turbines so as to minimize spills,
it is only a matter of the available lead times and the capacity of
the turbines that determines the best operation that maximizes
both benefits (reduction of flood damage and maximization of
hydropower), as demonstrated by Ilich and Basistha (2024) in
their recent work. In addition to the questionable compromise
between these goals, a large number of publications still enter-
tain this topic, sometimes using the monthly calculation time
steps to model floods, as is the case with the work of
Hatamkhani ef al. (2021), while simultaneously ignoring the
important reservoir outflow constraints for hydropower,
which should be modelled as a dynamic function of storage
as defined by Equation (7).

Other conflicting objectives that are usually modelled in
various studies may involve maximizing hydropower and
maximizing irrigation; however, most reservoirs are built
with one of those objectives as its primary purpose which
completely dominates the secondary purpose. One issue that
may justify using a multi-objective optimization approach is
the environmental river maintenance flows, which have
emerged as a more recent target, long after many reservoirs
had been constructed. In the past, water quality studies have
been conducted to determine biological minimum flows that
were then used as target in-stream maintenance flows in river
basin models, thus creating two steps in the modelling process
which separated modelling of water quality and quantity.
Multi-objective optimization has managed to creep into this
area as well, postulating the importance of modelling to deter-
mine reservoir releases via multiple outlets located at different
elevations. Examples of such studies are available from
Karamouz et al. (2011) and Aghasian et al. (2019), although
they also use monthly calculation time steps which are not
adequate for representing downstream river flows, and ignore
the reservoir outflow constraints, which should be of impor-
tance given multiple outflows with various outflow elevations



and reservoir storage that may vary significantly during
the year, thus affecting the dynamic outflow capacity of each
outlet. The purpose of multi-objective programming would be
to find a suitable way of fitting the priority of environmental
flows among other water allocation priorities such that the
final choice of priority is acceptable to all stakeholders. This
case is used to compare the basic ideas related to multi-objec-
tive optimization with the regular definition of mathematical
programming to try to identify the intersection between the
two. Simonovic (2008) provides a more detailed coverage of
multi-objective optimization. To ensure discussion, the left
side of Fig. 5 shows a typical graph used to define the so-called
non-dominated or Pareto-optimal solutions related to objec-
tives 1 and 2. The short straight lines that limit the solutions on
both axes show the maximum possible performance where all
demands are met for one objective at the expense of the other
objective. The solutions located in the middle range are not
dominated by either of the two objectives, so they are referred
to as a non-dominated or Pareto-optimal set. It is important to
note that each solution in this set consists of a time series of
regulated flows and reservoir levels over a multi-year simu-
lated period. The performance evaluation for each non-domi-
nated solution presented in Fig. 5 is therefore a formidable
task, and yet the proponents of multi-objective programming
advocate evaluation of a selected set of those solutions,
although there are no clear guidelines on how such a set should
be selected.

Since the heuristic algorithms progress in their search by
recombination of a group of solutions, they are more suitable
for multi-objective programming. The schematic presentation
of selected non-dominated solutions can be compared with the
case of having multiple optimal solutions in the classical defi-
nition of mathematical programming displayed on the right
side of Fig. 5. The objective function for a linear program with
two variables is defined as:

maxZ = C1X1 + C2X2 (8)

where the parameters C; are weight factors that represent opera-
tional priorities. For instances where C, > C;, the optimal
solution will be selected at the intersection of line a with the
feasible region shown on the right side of Fig. 5, while for
instances where C; > C,, the best solution will be selected at

Non-dominated
solutions

Objective 2
O‘Q

Objective 1

Figure 5. Conceptual comparison of multi-objective and classical optimization.
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the intersection of line b with the feasible region. The case where
C; = C, creates a solution where any point on the edge of the
feasible region that overlaps with line ¢ is equally optimal.
Within the operations research community at large, this
would be considered a “poorly defined optimization problem”
since it has an infinite number of equally optimal solutions. In
contrast, in the community of water resources practitioners, this
problem definition is celebrated through the practice of multi-
objective optimization. Although LP derives only a single solu-
tion, some researchers, like Rozos (2019), went through pains-
taking sensitivity analyses to determine the values of weight
factors C; and C, with minute differences until they found
solutions that are different in terms of the values of X; and X,
by using two different network flow models (MODSIM and
HEC-ResPRM) such that the values of their objective functions
are the same on the first three decimals, thus trying to mimic the
instance of finding different solutions that are equally optimal. It
should be noted, however, that it is possible to fix a desirable
solution out of many equally optimal solutions by introducing
additional constraints in the following form:

Xi Xz

ol 22 9
v, %n, ®)

where U; and U, are the upper bounds (water demands). If
factor a = 1, this constraint ensures an equal relative deficit
between the two objectives to maximize X; and X, thus
ensuring that both objectives receive equitable allocation by
making their relative deficits equal. Other values of factor «
would result in different sharing policies between X; and X,
for example 40/60, 30/70, or 60/40 and 70/30, expressed as
a percentage of the total demand, where U; and U, represent
the total demands.

With a few exceptions, such as Rozos (2019), the use of LP in
multi-objective optimization seems to be of no interest to
researchers, precisely because it ends up finding a single solu-
tion. Rather, most multi-objective publications rely on the use of
heuristic solvers. There is currently a plethora of (meta)heuristic
optimizers available, and none of them has been proven super-
ior over the others, which motivates the scientific community to
continuously evaluate their performance and put in efforts to
enhance them (Maier ef al. 2014). These efforts have gone in two
directions: to develop combinations of several optimization
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algorithms that complement each other (Beiranvand and
Ashofteh 2023), or to develop algorithms based on adaptive
operator selection (Reed and Hadka 2015), where the level of
an operator application (i.e. the share of the population being
optimized) is allocated to each algorithm separately depending
on its performance in previous generations, as proposed by
Hadka and Reed (2015). Most (meta)heuristic optimization
algorithms can be implemented for both single- and multi-
objective problems (Dobson et al. 2019). The multi-objective
problems can be solved either by converting them into single-
objective where some objectives are treated as soft constraints,
or by simultaneous multi-objective optimization that yields
numerous non-dominated solutions. As for the former, it can
be achieved by scaling and aggregating multiple non-commen-
surable objectives into a single objective (e.g. by implementing
a weighting scheme), by monetizing potential benefits from the
reservoir operation, or by implementing goal programming
techniques that reduce multi-objective into a series of single-
objective optimizations (Wu et al. 2023). Many researchers
acknowledge that multi-dimensional Pareto fronts are rather
challenging to communicate to stakeholders (Wu et al. 2023).
Therefore, a final solution is adopted by further analysing sev-
eral Pareto-optimal ones. While there is no doubt that this
approach has gained popularity in academic circles (Giuliani
et al. 2014, Beiranvand and Ashofteh 2023), it is difficult to find
examples of the application of these results in real time among
reservoir operators. The rise of multi-objective optimization vs
multi-purpose optimization has also shifted the scientific com-
munity in a new direction, where every stakeholder is treated as
equal (the basic assumption being that they cannot agree on
mutually acceptable water rationing policies), while the existing
water licensing systems as well as the existing operating prio-
rities in many river basins already have established priorities
that are unlikely to change during the lifetime of the existing
infrastructure.

3 Links between the results of optimization and the
current practices of basin managers

Reservoir operation is currently driven by the judgement of the
operators and the use of rule curves where available.
Understanding of the rule curve concept may vary among
water management agencies and reservoir operators, which
justifies a quick review of its origin and purpose.

According to Dobson et al. (2019), reservoirs can be operated
based on the standard operating policy (SOP), based on rule
curves, or by using real-time optimization. The standard oper-
ating policy proposed by Bower et al. (1962) implies that all
users’ demands are met provided there is a sufficient amount of
water in the reservoir, without taking into consideration future
supply/demand conditions, i.e. without hedging of water
demands that would reduce current supplies to reduce future
deficits (Neelakantan and Sasireka 2015). As such, the SOP
often results in premature emptying of the reservoirs (Spiliotis
et al. 2016). This led to the development of rule curves, which
typically consist of the upper and lower curve (Fig. 6). The
upper rule curve, also referred to as the flood-limited water
level in some publications (Jain et al. 2023), is typically shaped
by the probable maximum flood studies and it involves

Water f------mmm oo oo Max WL
Level Normal WL
Live Min WL
Storage
Jan Jun Dec

Figure 6. Schematic representation of the upper (normal WL) and lower (min WL)
rule curve.

mandatory drawdown during the time of the year when large
floods are likely to occur, to increase the flood storage zone and
prevent overtopping of the dam (EI Harraki et al. 2021). To
avoid shortages that can occur by following the SOP during dry
periods, Revelle et al. (1969) proposed the lower rule curve that
defines the trajectory of minimum storage levels in the dry
season, thus making sure that storage depletion is gradual, and
storage is not empty before the end of the dry season. The actual
reservoir operation can take any “live storage” level between the
lower and the upper rule curves based on the operators’ releases.

Although popular among practitioners, rule curves cannot
guarantee optimal reservoir operation. The shape of the upper
rule curve is usually fixed, while it should be different for each
incoming flood that could be determined if a perfect short-
term runoff forecast were available. On the other hand, the
lower rule curve assumes that storage is always full at the end
of each wet season, which may not be the case in dry years,
thus making it impossible to follow the lower rule curve from
the end of the wet season (Ilich 2023a). The shapes of the lower
and upper curves typically remain the same, despite different
hydrological regimes that may vary significantly from year
to year. The refinement of the rule curve concept was signifi-
cantly expanded with the introduction of the idea of demand
hedging (Draper and Lund 2004), where the rate of storage
depletion could be controlled by modifying the target demands
to slow the loss of storage in dry years (Tu et al. 2003, Spiliotis
et al. 2016, Ilich 2023b), by introducing operating zones asso-
ciated with various levels of demand reduction (or hedging).
These modifications imply a set of water rationing measures
that are triggered when certain water threshold levels are
reached (Garrote et al. 2023). These reductions are applied to
prevent severe long-term shortages that would otherwise occur
during dry periods (You and Cai 2008). Demand hedging is
commonly applied to irrigation, since it is typically the largest
consumptive water user in most river basins.

The hedging rules are identified by employing optimization
methods, that range from LP to non-linear or dynamic pro-
gramming, heuristic algorithms or hybrid optimization meth-
ods (Spiliotis et al. 2016), with various resulting mathematical
formulations of these rules (Neelakantan and Sasireka 2015).
The identification of optimal hedging rules represents an area
of active research in itself (You and Cai 2008, Neelakantan and
Sasireka 2015, Chong et al. 2021, Ehteram et al. 2021, El
Harraki et al. 2021, Tu et al. 2022, Anvari et al. 2023, Ji et al.
2023, Thiha et al. 2023). Recent work by Ilich (2023a) provides
mathematical proof that it is possible to simultaneously find
both the optimal rule curve and the optimal level of demand



hedging by adding the so-called “equal deficit constraints,”
which are defined as:
Yo Yin
Dy Dy

£=0, T—1 9

where Y, and D, represent water supply and water demand in
time step ¢, respectively. This constraint is added as
a constraint to the optimization problem to find optimal
allocation over multiple time steps for the entire period T by
taking into account all relevant reservoir outflow constraints,
net evaporation, and mutual interaction of reservoirs in
a multi-reservoir operating environment. The above constraint
ensures the minimum required hedging as part of the model
solution, subject to the starting storage levels, available reser-
voir inflows and water demands throughout T consecutive
time steps. The optimal level of demand hedging and the best
rule curve for each simulated year can thus be developed for
a large number of hypothetical hydrological years using impli-
cit stochastic optimization. These solutions are then analysed
statistically using various techniques to help create rule curves,
which provide target storage levels for subsequent time inter-
vals for any starting storage, by matching the existing database
of perfect solutions with the current conditions in the field.

There is little doubt that reservoir operators need guidance
for the simultaneous management of storage releases and water
rationing of downstream demands. Macian-Sorribes and
Pulido-Velazquez (2020) provide a review of techniques that
have been used to analyse the results of optimization models to
create guidance rules for reservoir operators, ranging from
regression, data mining, or the use of other artificial intelligence
(AI) techniques such as ANNs and decision trees. Still, the
optimality of model solutions should be based on selecting the
appropriate time step, which would typically exclude monthly
time steps due to considerations in Section 2.2, as well as to
make sure the solutions take into account important physical
constraints on maximum outflows through the bottom outlets
and turbines as a function of storage. Publications that comply
with the correct selection of time steps and the inclusion of the
necessary reservoir outflow constraints are rare, yet only such
publications provide a realistic possibility of deriving optimal
solutions from which efficient reservoir operating rules could be
inferred. Due to a small fraction of reservoir optimization
papers that provide derivation of practical reservoir operating
rules, it can be concluded that most existing operating rules are
still based on the use of simulation models, or sometimes mere
spreadsheet calculations. This invariably poses a question on the
utility and usefulness of the research efforts to develop powerful
modelling tools. Various engineering departments conduct
these studies, and since engineering is applied science, it is fair
to ask: Why are there so few practical applications of this
research?

4 Statistical analyses of the surveyed papers in terms
of handling constraints and delivering practical
operating rules

The preliminary list of papers to be included in this study
was obtained from the Scopus database (https://www.scopus.
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com/) via a search for the keywords “reservoir operation,”
“optimization” and “real-time” (or variants thereof), which
were sought in the titles, abstracts and keywords of the docu-
ments in the Scopus database. After the preliminary screening
of these documents based on their relevance to this paper, 197
of them were selected for a more detailed review according to
the approach elaborated in the following section, including
several that were added manually since they were relevant
but were not picked up by the search function. The results of
optimization can be used either as (a) input into additional
analyses that should result in the creation of reservoir operat-
ing rules; or (b) real-time operational tools.

The real-time operation applicability is still somewhat the-
oretical, since it assumes that runoff forecasting tools with
sufficient forecasting skills are available and used as input
into optimization models in real time. This combination of
runoff forecast and optimization is referred to as model pre-
dictive control (MPC) in some publications (Macian-Sorribes
and Pulido-Velazquez 2020). Although accepted on
a conceptual basis, it is difficult to infer whether the MPC
results are genuinely implemented by reservoir operators,
since these details are usually not explicit in publications and
the forecast reliability is uncertain. Jain et al. (2023) provide
a review of papers related to the application of multi-reservoir
models for flood operation. They list 26 publications that are
used as real-time operational tools, but one has to wonder how
this is achieved, given that only one of the referenced papers
(Prakash et al. 2015) takes into account hydrological channel
routing based on the Muskingum method that uses fixed
routing coefficients calibrated individually for each historical
flood. Also, Prakash et al. (2015) go out of their way to
formulate six objectives for reservoir operation during floods,
some of which are questionable. While the objective to keep
the downstream channel flow at or below the full-bank capa-
city is self-evident for all flood management studies, they add
several additional objectives that can only cause unnecessary
confusion, such as the objective to maximize the difference
between the peak reservoir inflow and peak outflow during the
flood event. This function would be maximized if the reservoir
outflow is kept at zero during the flood, which would neither
make sense nor be physically possible. However, the down-
stream flood damage for zero outflow would be the same as for
the outflow at the full-bank channel capacity, since both out-
flows would result in zero flood damage. A similar propensity
to unnecessarily complicate the objective function by introdu-
cing often dubious multiple objectives which are difficult to
reconcile or even explain to reservoir operators is often present
in other papers (Quinn et al. 2019, Krit et al. 2023). Since the
multi-objective approach is in vogue, most authors feel that it
is important to follow the trend by supporting the popular
approach. For example, Krit et al. (2023) provide six objective
functions expressed as the statistical evaluation of model
results, of which three (the shortage index, the average water
shortage, and the total square deficit) essentially represent the
same composite measure of water supply deficits.

Based on the topics presented in this paper,
a comprehensive assessment of optimal reservoir operation
should include the proper length of the simulated time step,
along with the proper inclusion of the outflow vs storage


https://www.scopus.com/
https://www.scopus.com/

10 N. ILICH AND A. TODOROVIC

relationship and net evaporation. The Scopus search for rele-
vant papers short-listed 197 papers that have been evaluated
using several criteria presented below. The list of references of
the 197 selected papers can be downloaded from Ilich and
Todorovi¢ (2024), while the relevant findings are shown in
Figs. 7 and 8.

Regarding the reservoir outflow limits, 53% of all publica-
tions model them as constants, while 22% model them as
temporal variables associated with the seasonal variation of
downstream water demands. Only 8% of all publications
included the limits determined as the minimum outflow capa-
city (based on the available storage and the accompanying
elevation vs outflow curve) and the target demands. As many
as 17% of all publications did not even include any reference to
the reservoir outflows. Consequently, in 92% of all surveyed
publications the model results may be very different from
those that would be feasible, due to ignoring the important
hydraulic outflow constraints. This is demonstrated by the
numerical example in Section 5. Regarding the time step
lengths, monthly time steps were used in 48% of the studies,
and also in about half of the studies with variable time step
length (6% of the total), a small subsection of the surveyed
papers where the reservoir operating rules were developed

Reservoir Outflow Limits

unclear
17%

Qmax(t,V)
8%
Fixed
53%
Qmax(t)
22%
= Fixed = Qmax(t) Qmax(t,V) = unclear

using monthly time steps and then implemented into the
model with daily time steps. When it comes to hourly time
steps, they generally include any lengths shorter than a day,
such as 3 or 6 h. The surveyed publications that used daily or
hourly time steps account for a total of 29% of all publications.
However, only one in three of these papers take into account
channel routing, as attested by Fig. 8, which shows that only
10% of all surveyed publications take into account channel
routing. This may be justified in instances where a single
reservoir is modelled without any downstream components;
however, such studies are of limited value, since most river
basins have multiple reservoirs.

It is also disappointing to see that only 18% of all publica-
tions include evaporation in the reservoir water balance equa-
tion, and most of them include only evaporation, rather than
net evaporation (evaporation minus precipitation on the water
surface area of the reservoir). About 58% of all publications
flatly ignore evaporation, while the authors of 23% of the
surveyed publications did not find it worth mentioning at all.
The use of heuristic solvers is typically associated with the use
of simplistic problem constraints. The result is that a large
percentage of fixed reservoir outflow constraints in Fig. 7
(53%) are typically associated with the widespread use of
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Figure 7. Reservoir outflow limits and time step length among the surveyed publications.
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Figure 8. Classification of channel routing, net evaporation and solution algorithms.



heuristic solvers in Fig. 8 (60%). The reason for this is likely the
need to add additional penalty terms to the objective function
to ensure feasibility. These terms complicate the convergence
to high-quality solutions and add significantly to the computa-
tional burden. Most papers that feature heuristic solvers
demonstrate their use on relatively simple problems with one
or two reservoirs and fewer than 10 variables, which is very
small compared to the size and complexity of typical modern
water resources systems. This pales in comparison with the
achievements documented by papers that use LP or NLP
solvers that are also used as solution engines for several
known commercial tools such as WEAP, MODSIM,
RiverWare, OASIS or WEB.BM. Despite all of the above,
heuristic solvers are viewed favourably by a large number of
researchers, whose funding is typically provided by research
grants that are usually not tied to the successful application of
their research by reservoir operators in the field or by water
management agencies. This disconnect is also visible in
Table 1.

While the aforementioned disconnect between academia
and practitioners has been known for decades, this survey
shows that the gap has not narrowed over time, contrary to
general expectations due to the emergence of technology in the
information age. The importance of the inclusion of the proper
reservoir outflow constraints is discussed in Section 5.

5 Numerical example

The following numerical example demonstrates the signifi-
cance of taking into account the outflow vs elevation function,
as opposed to ignoring it, along with demonstrating a novel

Table 1. Percentage of surveyed publications concerning the classification
criteria.

HYDROLOGICAL SCIENCES JOURNAL 1

use of LP for generating Pareto-optimal solutions. The system
schematic is shown in Fig. 9. There is one reservoir, one
diversion canal from the reservoir for irrigation supply, and
one tributary that contributes flows into a downstream river
reach that has environmental flow (E-flow) targets, which are
met with combined flows from the tributary and reservoir
releases.

The objective of the numerical example is to maximize
water supply for both E-flow requirements and irrigation
demands, by using weekly time steps over 22 consecutive
weeks of irrigation season. Five selected water sharing policies
were modelled using Equation (8), which ranged from equal
relative deficits between E-flows and irrigation to prioritizing
each type of water use at the expense of the other, along with
75%/25% and 25/75% sharing arrangements for the remaining
two scenarios. Tables 2 and 3 provide the input data.

Return flows are set to 20% of consumptive use on irriga-
tion block, while the reservoir releases to the downstream river
reach are made to augment tributary flows such that the E-flow
targets are met based on water sharing policies with irrigation
for each of the five selected water sharing policies. The differ-
ences between Scenario 1 and Scenario 2 are based on the
inclusion or exclusion of the outflow elevation curve as
a model constraint, while both Scenarios 1 and 2 enforce
equal relative deficit sharing between E-flows and irrigation.

The purpose of comparing the two scenarios is to demon-
strate the differences in optimal solutions with and without the
reservoir outflow constraints. The starting storage level for all
simulations was 24 m, with full supply at 30 m and dead
storage level at 5 m. When the control structure is used (as
in Scenario 1), the invert of the outflow structure located at the

Table 2. Reservoir capacity and outflow curve for irrigation canal.

Qmax
The publication Reservoir Water surface  Volume Reservoir diversion
Involvement of provides useable Actual use of elevation (m) area (ha) (1000 m®) elevation (m) (m?/s)
water managers  reservoir operating  results reported 0 0 0 10 0.00
Classification as co-authors guidelines in the industry 10 300 15 000 15 5.40
Yes 2.54% 9.14% 2.54% 20 400 50 000 20 9.00
No 94.92% 75.13% 93.91% 30 500 95 000 25 11.34
Unclear 2.54% 15.74% 3.55% 30 12.60
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Figure 9. Schematic layout of the numerical example.
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Table 3. Reservoir capacity and outflow curve for irrigation canal.

Input data Scenario 1 Scenario 2
Irrigation E-flow
Reservoir Irrigation E-flow target Tributary Evap.  Precip. supply supply Irrigation E-flow supply

Date inflow (m%/s)  demand (m%/s) (m?/s) inflow (m®/s)  (mm)  (mm) (m?/s) (m%s)  supply (m/s) (m3/s)
1 April 2023 3.724 2.040 1.676 0.561 7 0 1.545 1.272 1.888 1.555
8 April 2023 3.220 3.091 1.449 0.349 7 0 2.340 1.098 2.860 1.342
15 April 2023 3.080 4423 1.386 0.371 8 0 3.347 1.052 4.090 1.286
22 April 2023 3.860 5.862 1.737 0.583 10 0 4437 1317 5.423 1.610
29 April 2023 4.752 7.273 2.138 0.765 12 0 5.505 1.620 6.728 1.980
6 May 2023 8.122 8.555 3.655 1.539 14 0 6.474 277 7.912 3.387
13 May 2023 11.034 9.639 4.965 1.458 16 0 7.299 3.763 8.921 4.599
20 May 2023 13.101 10.482 5.895 1.623 18 0 7.935 4.467 9.698 5.460
27 May 2023 14.144 11.067 6.365 1.563 20 0 8.382 4816 10.244 5.886
3 June 2023 14.157 11.397 6.371 2.077 22 29 8.632 4823 10.550 5.895
10 June 2023 13.267 11.489 5.970 1.631 24 43 8.700 4.520 10.633 5.525
17 June 2023 11.700 11.374 5.265 1.370 25 0 8.609 3.983 10.522 4.868
24 June 2023 9.743 11.093 4.384 1.071 27 58 8.397 3.316 10.263 4.053
1 July 2023 7.710 10.690 3.469 0.913 29 60 8.094 2627 9.893 321
8 July 2023 5.901 10.212 2.655 0.723 30 59 7.731 2.014 9.449 2.462
15 July 2023 4.570 9.704 2.057 0.607 32 56 7.344 1.560 8.977 1.906
22 July 2023 3.886 9.203 1.749 0.459 34 0 6.966 1325 8.514 1.620
29 July 2023 3.897 8.739 1.753 0.426 36 46 6.618 1.325 8.088 1.620
5 August 2023 3.600 8.326 1.620 0.462 38 39 6.307 1.227 7.709 1.499
12 August 2023 3.700 7.962 1.665 0.481 40 0 6.027 1.264 7.366 1.546
19 August 2023 3.400 7.625 1.530 0.517 41 0 5.777 1.158 7.061 1416
26 August 2023 3.200 7.268 1.440 0.451 42 0 5.505 1.090 6.728 1.333

Total 85.86 31.70 104.93 38.74

elevation of 10 m becomes de facto the dead storage level, since
the storage level below the invert results in zero flows into the
irrigation canal, and that would also stop water allocation to
E-flows in any scenario where there is equal deficit sharing
between irrigation and E-flows. It is instructive to observe the
difference in optimal reservoir levels between Scenarios 1 and
2, which are both based on equal deficit sharing between
E-flows and irrigation, and differ only by the inclusion of the
outflow vs elevation curve in the model vs ignoring it, as
shown in Fig. 10. Although the water demands for E-flows
and irrigation are identical in Scenario 1 and 2, the inclusion of
the outflow constraint results in a different solution in
Scenario 1, with about 22.2% lower supply compared to
Scenario 2 where the outflow vs elevation constraint is
included in the model. Figure 11 shows that the resulting
optimal rule curves obtained for Scenarios 1 and 2 are quite
different, while this difference is only caused by including or
excluding the outflow vs elevation curve as an optimization
constraint.
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Figure 10. Comparison of optimal reservoir levels for Scenarios 1 and 2.

A total of five scenarios that utilize the outflow vs elevation
curve were developed with deficit sharing ranging from the
maximum priority given to either irrigation or E-flows on each
end of the spectrum, with three additional scenarios that
involve sharing of relative deficits either 50/50 or by giving
a predetermined amount of higher share to each type of water
use at the expense of the other. Each of these five solutions was
obtained after less than 1 second of computer run time and
they are sufficient to create the Pareto-optimal front shown in
Fig. 12 in the units of mean annual water supply to each water
use on the left side of the graph, and in terms of the mean
relative deficits as a percentage of the target demands.

There are some advantages to obtaining the Pareto front
in this way: (a) each of the points in the curve is guaran-
teed to be globally optimal (i.e. the best possible) subject to
the input data and assumed water-sharing policy (as
opposed to being “approximate,” resulting from the use
of heuristic solvers); (b) each of the solutions is guaranteed
to comply with the reservoir elevation vs outflow con-
straints and the deficit sharing constraints; and, (c) the
computational effort of getting the Pareto-optimal front is
smaller by several orders of magnitude compared to the
use of heuristic solvers, which enables the use of this
approach on much larger problems with shorter time
steps that may also include hydrological routing (Ilich
and Basistha 2024). All of these advantages result from
the nature of LP, which seems to be downplayed in many
recent publications as an example of “outdated” technol-
ogy. The test problem presented here may seem trivial, but
most heuristic solvers may have significant difficulties find-
ing the solutions to Scenario 1 shown in Table 2 due to the
complexities of the constraints that need to be enforced
over 22 weeks simultaneously between two diverse compo-
nents, one of which also has the local runoff contribution.
A proper account of net evaporation has also been
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Figure 11. Irrigation and E-flow water use and target demands in Scenario 1.
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Figure 12. Pareto-optimal front expressed in the units of volume and percent deficit.
included in the simultaneous optimization of reservoir quality since they may not be physically possible during
operation for 22 consecutive weeks in this example. low storage levels.

e Net evaporation is not modelled properly in a large
majority of modelling studies. It is either modelled as
6 Conclusions and recommendations evaporation (without its precipitation component), or it
is ignored altogether.
Only a handful of optimization models that were
surveyed display the ability to be used as real-time
operational tools, mainly due to their inability to
handle channel routing that is required for daily or
sub-daily reservoir release decisions in multi-reservoir
systems. In addition to the low reliability of real-time
runoff forecasts, the lack of ability to address these
processes in most models with sufficient accuracy is
probably one of the principal reasons for the gap
between theory and practice when it comes to apply-
ing the model results as guidance for reservoir releases
in real-time.
Multi-objective optimization has introduced additional
complexity into modelling by generating a multitude of
solutions without clear guidance to practitioners on how
to apply these solutions in their day-to-day decision

This paper provides a targeted review of the current state of the o
art in river basin modelling, with an emphasis on the applic-
ability of model solutions for basin managers and reservoir
operators. The results of this survey indicate that there is still

a significant disconnect between academia and practitioners.

The main findings can be summarized through the following
points:

e Most planning studies aiming to develop reservoir rule
curves rely on the use of monthly calculation time steps.
This causes gross simplification of inflow hydrographs,
with negative effects on the accuracy of the model results
that have yet to be properly evaluated and reported in the o
literature.

e Most modelling studies ignore the effect of reservoir
outflow constraints and deliver solutions of questionable
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making to improve the management of reservoir releases.
Clear guidelines on how the problems should be formu-
lated and solved are missing, resulting in a multitude of
ideas among researchers that have achieved no traction
among practitioners. Also, the above remarks on the
importance of proper modelling of constraints are also
applicable to multi-objective optimization.

e LP solution algorithms are still the premier tools for river
basin management models, capable of solving large pro-
blems with complex constraints much faster than any
other solution methodologies, while simultaneously
guaranteeing finding solutions that are globally optimal.
Many researchers seem to have lost sight of this fact.

The surveyed papers document various attempts that have
been made to infer reservoir operating rules from the results
of river basin optimization models. The findings on the nature
of practicality of the reservoir operating rules are as follows:

e The use of regression (linear or non-linear) that relates
the starting storage level and anticipated (forecasted)
reservoir inflow for a given time step to the reservoir
outflows remains one of the common techniques for the
generation of the reservoir release rules. This approach
has recently been complemented by using ANN and
other machine learning algorithms instead of regression.
However, typical difficulties are the use of monthly or 10-
daily time steps in these studies, which would require
reliable monthly or 10-daily runoff forecasts for real-time
applications. The other disadvantage of this method is
that it derives reservoir releases without taking into
account the current downstream water demands that
may be partially met by downstream runoff and down-
stream rainfall, the effects of which are typically ignored
by regression models.

e Reservoir rule curves have been defined in most of the
surveyed studies as the storage trajectories obtained from
optimization models over a range of inflow conditions.
More refined studies resulted in three different rule
curves, corresponding to typical dry, median or wet
years. However, these rule curves are still fixed, while
they should depend on the starting storage levels inher-
ited from previous years and the runoff/demand condi-
tions in each year, and they may differ significantly
from year to year. A universally acceptable method of
analysing numerous optimal reservoir trajectories to cre-
ate practical guidelines for reservoir operation in typical
dry, median and wet years is still missing.

e Some proposals for joint management of storage using
reservoir operating zones that are related in varying
degrees of water rationing policies seem to hold promise
for improved drought management that is relatively easy
to follow and implement. These proposals do not rely on
inflow forecasts, but they do take into account the time of
the year and starting storage levels.

e Similarly, the model predictive control (MPC) approach
seems to be very promising for reservoir management
during floods. The difficulty is the need to provide real-
time data from the field (starting river and storage

conditions), along with a reliable short-term runoff fore-
cast. Given the massive efforts in the development of
sophisticated weather forecasts, improved remote sen-
sing and the use of Al to improve rainfall-runoff models,
the eventual synergy between these emerging technolo-
gies and the MPC approach may yet be the best option
for computerized assistance of future real-time reservoir
operation during floods.
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